K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TX
0
+) Trước hết, ta tìm một đa thức H(x) = x3 + mx2 + nx + p sao cho H(1) = 10; H(2) = 20; H(3) = 30
H(1) = 10 => 1 + m + n + p = 10 => m+ n + p = 9 => p = 9 - m - n (1)
H(2) = 20 => 8 + 4m + 2n + p = 20 => 4m + 2n + p = 12 (2)
H(3) = 30 => 27 + 9m + 3n + p = 30 => 9m + 3n + p = 3 (3)
Thế (1) vào (2) và (3) ta được hệ 2 ẩn m; n : 3m + n = 3 và 8m + 2n = - 6 => m = -6; n = 21 => p = -6
Vậy H(x) = x3 -6x2 + 21x - 6
+) Xét đa thức G(x) sao cho G(x) = P(x) - H(x) = x4+ax3+bx2+cx+d - ( x3 -6x2 + 21x - 6) = x4+(a-1)x3+ (b+6).x2 + (c-21) x+(d+6)
G(x) = P(x) - H(x) => G(1) = P(1) -H(1) = 0 ; G(2) = G(3) =0 => 1;2;3; là các nghiệm của G(x)
Mà bậc của G(x) = 4 nên G(x) có nhiều nhất 4 nghiệm; giả sử đó là xo
=> G(x) = (x - 1).(x -2).(x - 3).(x - xo)
=> P(x) = H(x) + G(x) = x3 -6x2 + 21x - 6 + (x - 1).(x -2).(x - 3).(x - xo)
=> P(12) = 1110 + 990.(12 - xo)
P(-8) = -1070 - 990.(-8 - xo)
=> P(12) + P(-8) = 40 + 990.20 = 19 840
Vậy....
P(1)=1+a+b+c+d = 10
P(2)=16+8a+4b+2c+d = 20
P(3)=81+27a+9b+3c+d = 30
P(12)=20736+1728a+144b+12c+d
P(-8)=4096 - 512a + 64b - 8c + d
=>P(12)+P(-8)=24832+1216a+208b+4c+2d (*)
Ta lại có
100P(1) - 198P(2) +100P(3)
=100(1+a+b+c+d) - 198(16+8a+4b+2c+d) + 100(81+27a+9b+3c+d)
=5032+1216a+208b+4c+2d
Mặt khác:
100P(1) - 198P(2) +100P(3)
=100.10 - 198.20 + 100.30
=40
Suy ra 5032+1216a+208b+4c+2d=40
<=>1216a+208b+4c+2d= -4492 Thay vào (*) ta có:
P(12)+P(-8)=24832 - 4492=19840