\(ax^2+bx+c\). Biết \(9a-b=-3c\).

Chứng min...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2020

Ta có: a + 3c + a + 2b = 2019 + 2020 = 4039 

=> 2 ( a + b + c ) = 4039 - c (1)

a; b ; c là các số hữu tỉ không âm => a; b ; c \(\ge\)

=> 2 ( a + b + c ) = 4039 - c \(\le\)4039 

=> a + b + c \(\le\frac{4039}{2}=2019\frac{1}{2}\)

mà f(1) = a + b + c 

=> f (1) \(\le2019\frac{1}{2}\)

Dấu "=" xảy ra <=> c = 0 ; a = 2019 ; b = 1/2

23 tháng 2 2022

ai bt giúp mình đc ko

26 tháng 5 2018

Ta có: \(P\left(x\right)=ax^2+bx+c\)   và  9a - b + 3c = 0.

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(2\right)=4a+2b+c\\P\left(-2\right)=4a-2b+c\end{cases}}\)

\(\Rightarrow P\left(-1\right)+P\left(2\right)+P\left(-2\right)=a-b+c+4a+2b+c+4a-2b+c\)

\(=9a-b+3c\)

\(=0\)

\(\Rightarrow\)trong 3 số  P(-1); P(2) và P(-2) sẽ có nhiều nhất ít nhất 1 số không âm để tổng 3 số trên là 0 (thỏa mãn điều kiện đề cho).

27 tháng 5 2018

Bạn thay -1, -2, -3 vào đa thức. Cộng cả 3 vào sẽ có kết quả.

p/s ngu như lol bài dễ vl cũng bày đặt ;V

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)