Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x)=2x^4+2x^3-5x+3
Q(x)=4x^4-2x^3+2x^2+5x-2
P(x)+Q(x)
=2x^4+2x^3-5x+3+4x^4-2x^3+2x^2+5x-2
=6x^4+2x^2+1
`2x^2 - 3x + 5`
`+`
`- 2x^2 - 7x - 5`
___________________
`-10x`
Vậy `A(x) + B(x) = -10x`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`@ A(x) - B(x)`
`2x^2 - 3x + 5`
`-`
`-2x^2 - 7x - 5`
___________________
`4x^2 + 4x + 10`
Vậy `A(x) - B(x) = 4x^2 + 4x + 10`
a: \(P\left(x\right)=3x^2-x-1\)
\(Q\left(x\right)=-3x^2-4x-2\)
b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)
c: Để G(x)-6x-1=0 thì 6x2-3x=0
=>3x(2x-1)=0
=>x=0 hoặc x=1/2
a) \(P_{\left(x\right)}=2x^3-2x+x^2+3x+2\)
\(P_{\left(x\right)}=2x^3+x^2+x+2\)
\(Q_{\left(x\right)}=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q_{\left(x\right)}=x^3+x^2+x+1\)
b) \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(2x^3+x^2+x+2\right)+\left(x^3+x^2++x+1\right)\)
\(=3x^3+2x^2+2x+3\)
`P(x)=`\( 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x\)
`= (2x^4-x^4)+3x^3+(3x^2-2x^2)+(-4x+6x)+2`
`= x^4+3x^3+x^2+2x+2`
`Q(x)=`\(x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3\)
`= x^4+x^3+(3x^2-x^2)+(5x-3x)+(-1+2)`
`= x^4+x^3+2x^2+2x+1`
`P(x)+Q(x)=(x^4+3x^3+x^2+2x+2)+(x^4+x^3+2x^2+2x+1)`
`=x^4+3x^3+x^2+2x+2+x^4+x^3+2x^2+2x+1`
`=(x^4+x^4)+(3x^3+x^3)+(x^2+2x^2)+(2x+2x)+(2+1)`
`= 2x^4+4x^3+3x^2+4x+3`
`@`\(\text{dn inactive.}\)
P(x)=x^4+3x^3+x^2+2x+2
Q(x)=x^4+x^3+2x^2+2x+1
P(x)+Q(x)=2x^4+4x^3+3x^2+4x+3
\(P\left(x\right)=-3x^2+2x-1\)
\(+\) \(Q\left(x\right)=3x^2-2x-3\)
\(_{_{_{_{_{_{_{_{_{_{_{ }}}}}}}}}}}\)____________________________
\(0\) \(+\) \(0\) \(-4\)
Vậy \(P\left(x\right)+Q\left(x\right)=-4\)