Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
a, Dễ quá bỏ qua .
b, Ta có : \(x^2-2\left(m+1\right)x+4m=0\)
=> \(\Delta^,=b^{,2}-ac=\left(m+1\right)^2-4m=m^2+2m+1-4m\)
=> \(\Delta^,=m^2-2m+1=\left(m-1\right)^2\ge0\)
Nên phương trình có 2 nghiệm .
- Theo vi ét có : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2\left(m+1\right)\\x_1x_2=\frac{c}{a}=4m\end{matrix}\right.\)
- Để \(\left(x_1+3\right)\left(x_2+3\right)=3m^2+12\)
<=> \(x_1x_2+3x_1+3x_2+9=3m^2+12\)
<=> \(x_1x_2+3\left(x_1+x_2\right)+9=3m^2+12\)
<=> \(4m+6\left(m+1\right)+9=3m^2+12\)
<=> \(3m^2-10m-3=0\)
<=> \(\left[{}\begin{matrix}m=\frac{5-\sqrt{34}}{3}\\m=\frac{5+\sqrt{34}}{3}\end{matrix}\right.\)
Vậy ........
Lời giải:
Trước hết để pt có 2 nghiệm pb $x_1,x_2$ thì \(\Delta=25-4(3m-1)>0\)
\(\Leftrightarrow m< \frac{29}{12}\)
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-5\\ x_1x_2=3m-1\end{matrix}\right.\)
Khi đó:
\(x_1^3-x_2^3+3x_1x_2=75\)
\(\Leftrightarrow (x_1-x_2)(x_1^2+x_1x_2+x_2^2)+3x_1x_2=75\)
\(\Leftrightarrow (x_1-x_2)[(x_1+x_2)^2-x_1x_2]+3x_1x_2=75\)
\(\Leftrightarrow (x_1-x_2)(26-3m)+3(3m-1)=75\)
\(\Leftrightarrow (x_1-x_2)(26-3m)=78-9m\)
\(\Leftrightarrow (26-3m)(x_1-x_2-3)=0\)
\(\Rightarrow \left[\begin{matrix} m=\frac{26}{3}(\text{loại vì m}< \frac{29}{12}\\ x_1-x_2=3\end{matrix}\right.\)
Vậy \(x_1-x_2=3\). Kết hợp với \(x_1+x_2=-5\Rightarrow x_1=-1; x_2=-4\)
\(\Rightarrow 4=x_1x_2=3m-1\Rightarrow m=\frac{5}{3}\) (thỏa mãn)
Vậy..........
Em nghĩ đề phải là x1^3 + x2^3 chứ :<
Để phương trình có 2 nghiệm : \(\Delta\ge0\)
hay \(25-4\left(3m-1\right)=25-12m+4=29-12m\ge0\)
\(\Leftrightarrow-12m\ge-29\Leftrightarrow m\le\frac{29}{12}\)
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-5\\x_1x_2=\frac{c}{a}=3m-1\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=25\Rightarrow x_1^2+x_2^2=25-2x_1x_2=25-6m+2=27-6m\)
Ta có : \(x_1^3+x_2^3+3x_1x_2=75\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)+3x_1x_2=75\)
\(\Leftrightarrow-5\left(27-6m-3m+1\right)+3\left(3m-1\right)=75\)
\(\Leftrightarrow-5\left(28-9m\right)+9m-3=75\)
\(\Leftrightarrow-140+45m+9m-3=75\Leftrightarrow m=\frac{109}{27}\)( ktm )
Bài 5:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m-1)^2-m^2\geq 0$
$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$
$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)
Khi đó:
$(x_1-x_2)^2+6m=x_1-2x_2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$
$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$
$\Leftrightarrow 4m-6=3x_2$
$\Leftrightarrow x_2=\frac{4}{3}m-2$
$x_1=2(m-1)-x_2=\frac{2}{3}m$
Suy ra:
$x_1x_2=m^2$
$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$
$\Leftrightarrow m(8m-12-9m)=0$
$\Leftrightarrow m(-m-12)=0$
$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.
Bài 4:
Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$
$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)
Khi đó:
$2x_1^2+4mx_2+2m^2-1\geq 0$
$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$
$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$
$\Leftrightarrow 4m. 2\geq 0$
$\Leftrightarrow m\geq 0$
Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.
X1 + X2 = - 5, X1.X2 = 3m - 1 (Viét) (1) ( bạn tự tìm Điều kiện để phương trình có 2 nghiệm nha)
pt <=>(x1-x2).[(x1+x2)^2 - x1.x2] + 3x1.x2 = 75 (2)
thay (1) vào (2) ta được : (x1-x2)(26-3m) + 3(3m-1) = 75
<=> (x1-x2)(26-3m) = 75 - 3(3m-1) <=> (x1-x2)(26-3m) = 78-9m <=> (x1-x2) = (78-9m) / ((26-3m)
<=> x1-x2 = 3
kết hợp với Điều kiện (1) bạn sẽ có hệ: x1+x2 = = -5
x1- x2 = 3
giải ra được x1 và x2 => m = ? (nhớ kiểm tra Điều kiện delta > 0 )
mấy cái này bạn tự làm ,
100+1876445555=..........