Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(a+b+c=0\) nên pt luôn có 2 nghiệm
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)
Dấu "=" xảy ra khi \(m=1\)
2.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)
\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)
\(\Delta'=m^2-2\left(m^2-2\right)=4-m^2\ge0\Rightarrow-2\le m\le2\)
Khi đó ta có \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\frac{m^2-2}{2}\end{matrix}\right.\)
\(A=\frac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{m^2+1}{m^2+2}=1-\frac{1}{m^2+2}\)
Do \(0\le m^2\le4\Rightarrow\frac{1}{6}\le\frac{1}{m^2+2}\le\frac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}A_{min}=1-\frac{1}{2}=\frac{1}{2}\Rightarrow m=0\\A_{max}=1-\frac{1}{6}=\frac{5}{6}\Rightarrow m=\pm2\end{matrix}\right.\)
Áp dụng Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}\Rightarrow A=\frac{2m+1}{m^2+2}\left(1\right)}\)Tìm đk để pt (1) có nghiệm theo ẩn
\(\Rightarrow\frac{-1}{2}\le P\)
Dấu "=" xảy ra <=> m=-2
\(\Delta=\left(2m-1\right)^2-4.\left(m-1\right).2=4m^2-4m+1-8m+8=4m^2-12m+9=\left(2m-3\right)^2\ge0\forall m\)
Theo hệ thức viet có:
\(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)
\(4x_1^2+4x_2^2+2x_1x_2\)\(=4x_1^2+4x_2^2+8x_1x_2-6x_1x_2=4\left(x_1+x_2\right)^2-6x_1x_2=4.\left(\frac{1-2m}{2}\right)^2-6.\frac{m-1}{2}=1\)
\(\Leftrightarrow\left(1-2m\right)^2-3\left(m-1\right)=1\)
Tự làm tiếp nhé
Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1\cdot x_2=m-1\end{matrix}\right.\)
A = \(x_1^2+x_2^2-6x_1x_2=\left(x_1+x_2\right)^2-8x_1x_2\)
\(\Leftrightarrow A=m^2-8\left(m-1\right)=m^2-8m+1\)
\(\Leftrightarrow A=\left(m-4\right)^2-15\ge-15\)
Dâu '='' xảy ra khi \(m-4=0\Leftrightarrow m=4\)
Vậy giá trị nhỏ nhất của A là -15 \(\Leftrightarrow m=4\)
Chết quên. Bạn xét \(\Delta>0\) đã nhé!
Từ đó suy ra điều kiện của m rồi mới kết luận m = 4 có thỏa mãn ko nhé!
\(m>1\Rightarrow ac=-m-3< 0\Rightarrow\) pt luôn có 2 nghiệm trái dấu
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)
\(A=\dfrac{2\left(x_1+x_2\right)^2-6x_1x_2}{x_1+x_2}=\dfrac{2.4\left(m-1\right)^2+6\left(m+3\right)}{2\left(m-1\right)}\)
\(=\dfrac{4\left(m-1\right)^2+3\left(m-1\right)+12}{m-1}=4\left(m-1\right)+\dfrac{12}{m-1}+3\)
\(A\ge2\sqrt{4\left(m-1\right).\dfrac{12}{m-1}}+3=3+8\sqrt{3}\)
Dấu "=" xảy ra khi \(4\left(m-1\right)=\dfrac{12}{m-1}\Rightarrow m=1+\sqrt{3}\)