Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Để pt có hai nghiệm trái dấu thì m+5<0
=>m<-5
b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)
\(=m^2+4m+4-4m-20=m^2-16\)
Để phương trình có hai nghiệm phân biệt thì m^2-16>0
=>m>4 hoặc m<-4
c: x1^2+x2^2=23
=>(x1+x2)^2-2x1x2=23
=>(m+2)^2-2(m+5)=23
=>m^2+4m+4-2m-10-23=0
=>m^2+2m-29=0
hay \(m=-1\pm\sqrt{30}\)
d: Để pt có hai nghiệm âm phân biệt thì
\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)
Bài 6
Để phương trình có vô số nghiệm thì
m+n-3=0 và 2m-3n+4=0
=>m+n=3 và 2m-3n=-4
=>m=1; n=2
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-m-1=0\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-m-1=0\)
Đặt \(x^2+6x+7=\left(x+3\right)^2-2=t\ge-2\) ta được:
\(\left(t-2\right)\left(t+1\right)-m-1=0\)
\(\Leftrightarrow t^2-t-m-3=0\) (1)
a/ Bạn tự giải (thay số bấm máy ez)
b/ Pt có nghiệm thỏa \(x^2+6x+7\le0\) khi và chỉ khi (1) có nghiệm \(t\in\left[-2;0\right]\)
Ta có: \(\left(1\right)\Leftrightarrow t^2-t-3=m\)
Xét hàm \(f\left(t\right)=t^2-t-3\) trên \(\left[-2;0\right]\)
\(a=1>0;\) \(-\frac{b}{2a}=\frac{1}{2}>0\Rightarrow f\left(t\right)\) nghịch biến trên \(\left[-2;0\right]\)
\(\Rightarrow f\left(0\right)\le f\left(t\right)\le f\left(-2\right)\Rightarrow-3\le f\left(t\right)\le3\)
\(\Rightarrow-3\le m\le3\)
Bài 3:
a: TH1: m=-2
=>-2(-2-1)x+4<0
=>6x+4<0
=>x<-4/6(loại)
TH2: m<>-2
\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)
=4m^2-8m+4-16m-32
=4m^2-24m-28
Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)
b: TH1: m=3
=>5x-4>0
=>x>4/5(loại)
TH2: m<>3
Δ=(m+2)^2-4*(-4)(m-3)
\(=m^2+4m+4+16m-48=m^2+20m-44\)
Để bất phương trình vô nghiệm thì
\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)
a/ \(\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m-1\right)^2-3\left(m-1\right)\left(m+1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-m^2-m+2\le0\end{matrix}\right.\) \(\Rightarrow m\ge1\)
b/ \(\left\{{}\begin{matrix}m^2+4m-5< 0\\\Delta'=\left(m-1\right)^2-2\left(m^2+4m-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m-5< 0\\-m^2-10m+11\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-5< m< 1\\\left[{}\begin{matrix}m\le-11\\m\ge1\end{matrix}\right.\end{matrix}\right.\)
Không tồn tại m thỏa mãn
c/ Do \(x^2-8x+20=\left(x-4\right)^2+4>0\) \(\forall x\) nên BPT nghiệm đúng với mọi x khi mẫu số âm với mọi x
\(\Rightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m+1\right)^2-m\left(9m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-8m^2-2m+1< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m< -\frac{1}{2}\\m>\frac{1}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -\frac{1}{2}\)
d/ Do \(3x^2-5x+4>0\) \(\forall x\) nên BPT luôn đúng khi:
\(\left\{{}\begin{matrix}m-4>0\\\left(m+1\right)^2-4\left(2m-1\right)\left(m-4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\-7m^2+38m-15< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \frac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>5\)