K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

a) \(\Delta\)= b2-4ac=\([-2\left(m-1\right)\)2-4.1.(m-3)

                           =4(m2-2m+1)-4m+12

                                =4m2-12m+16=(2m-3)2+7>0

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

b)Vì pt luôn có 2 nghiệm phân biệt với m

Theo vi ét ta có:x1+x2=\(\frac{-b}{a}\)= 2m-2=S (1)

                     x1.x2=\(\frac{c}{a}\)=m-3=P (2)

Từ(1)\(\Rightarrow2m=S+2\)

          \(\Rightarrow m=\frac{S+2}{2}\left(3\right)\)

Từ(2)\(\Rightarrow m=P-3\left(4\right)\)

Từ (3) và(4)\(\Rightarrow\frac{S+2}{2}=P-3\)

               \(\Leftrightarrow S+2-2P+6=0\)

               \(\Leftrightarrow S-P+8=0\)

Do đó\(\Leftrightarrow\left(x_1+x_2\right)-\left(x._1.x_2\right)+8=0\left(đfcm\right)\)

26 tháng 3 2019

1.a

ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)\)

 = m^2-m^2+1=1>0

vậy pt luôn có 2 no vs mọi m

26 tháng 3 2019

a)\(\Delta=m^2-\left(m+1\right)\left(m-1\right)=m^2-m^2+1=1\)

Vậy pt luôn có 2 nghiệm với mọi m

b)

Theo hệ thức Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

mà \(\frac{m+1}{m-1}=5\Rightarrow m=1,5\)

vậy \(x_1\cdot x_2=\frac{2m}{m-1}=6\)

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=2+\frac{2}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

\(\Rightarrow x_1+x_2-x_1\cdot x_2=2+\frac{2}{m-1}-1-\frac{2}{m-1}=1\)

c)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Rightarrow\frac{x_1^2+x_2^2+2x_1x_2+3x_1x_2}{2x_1x_2}=0\Rightarrow\left(x_1+x_2\right)^2+3x_1x_2=0\)

\(\Leftrightarrow\left(\frac{2m}{m-1}\right)^2+\frac{3\left(m+1\right)}{m-1}=0\Rightarrow m=\pm\sqrt{\frac{3}{7}}\)

21 tháng 5 2016

a) x1^2+x2^2=(x1+x2)^2-2x1x2

x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)

áp dụng viét thay vô

b) giải hệ pt

đenta>=0

x1+x2=-m

x1x2=m+3

và 2x1+3x2=5

c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại

d)áp dụng viét 

x1+x2=-m

x1x2=m+3

CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

6 tháng 3 2016

lazy à cái phần ta có mình chưa hiểu lắm. bạn giúp mình duocj ko?

Ta có : \(mx^2-2\left(m+2\right)x+m+7=0\left(a=m;b=-2m-4;c=m+7\right)\)

Để phương trình có 2 nghiệm phân biệt ta có : \(\Delta>0\)hay 

\(\left(-2m-4\right)^2-4m\left(m+7\right)=-12m+16>0\)

\(\Leftrightarrow-12m+16>0\Leftrightarrow-12m>16\Leftrightarrow m>-\frac{4}{3}\)

Theo Vi et : \(x_1+x_2=\frac{2m+4}{m};x_1x_2=\frac{m+7}{m}\)

\(\Leftrightarrow m\left(x_1+x_2\right)=2m+4\)(*)

Mà \(x_1x_2=\frac{m+7}{m}\Leftrightarrow m=\frac{7}{x_1x_2-1}\)(**)

Thay vào pt (*) ta có : \(\frac{7}{x_1x_2-1}\left(x_1+x_2\right)=2.\frac{7}{x_1x_2-1}+4\)