K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Δ=(-4)^2-4(4m+3)

=16-16m-12

=-16m+4

Để phương trình có hai nghiệm phân biệt thì -16m+4>0

=>-16m>-4

=>m<1/4

b: x1^2+x2^2=9

=>(x1+x2)^2-2x1x2=9

=>4^2-2(4m+3)=9

=>2(4m+3)=16-9=7

=>4m+3=7/2

=>4m=1/2

=>m=1/8(nhận)

19 tháng 6 2015

1) pt có 2 nghiệm pb <=> \(\Delta=16-4\left(-m^2\right)=16+4m^2>0\)=> pt luôn có 2 nghiệm phân biệt với mọi m

2) vì là giá trị tuyệt đối => A>=0 => Min A=0 <=> \(x1^2-x2^2=0\Leftrightarrow x1=x2\)

=> pt có 1 nghiệm kép. mà biết thức đenta luôn >0 => k tìm đc giá trị nhỏ nhất của A

2 tháng 7 2020

a, Để phương trình có 2 nghiệm phân biệt thì 

\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)>0\)

\(< =>4m^2-4m+1-4m^2+1>0\)

\(< =>2-4m>0\)\(< =>2>4m< =>m< \frac{2}{4}\)

b , bạn dùng vi ét là ra 

17 tháng 4 2016

trời đất
ai tl hộ mình vs

12 tháng 7 2018

Câu a : Ta có :

\(\Delta=4m^2+4\left(m^2+5\right)=8m^2+20>0\)

\(\Delta>0\) nên phương trình luôn có 2 nghiệm phân biệt với mọi m .

Câu b : Theo định lý vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4m^2-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2-x_1x_2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-x_1x_2\)

\(=\left[\left(2m\right)^2-2\left(-4m^2-5\right)\right]-\left(-4m^2-5\right)\)

\(=4m^2+8m^2+10+4m^2+5\)

\(=16m^2+15\)

\(16m^2\ge0\Rightarrow16m^2+15\ge15\)

Do đó GTNN của A sẽ là 15 khi \(16m^2=0\Leftrightarrow m=0\)