Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Khi \(m=0\), PT(1) trở thành: \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy \(S=\left\{0;1\right\}\)
2, PT đã cho có \(a=1>0\)nên đây là 1 PT bậc 2
Lập \(\Delta=b^2-4ac=\left(2m+1\right)^2-4\left(m^2+m\right)=4m^2+4m+1-4m^2-4m=1>0\)
Do đó PT (1) luôn có 2 nghiệm phân biệt
3, \(x_1< x_2\)là nghiệm của PT (1) \(\Rightarrow x_1=\frac{-b-\sqrt{\Delta}}{2a}< \frac{-b+\sqrt{\Delta}}{2a}=x_2\)
Ta có: \(x_2-x_1=\frac{2\sqrt{\Delta}}{2a}=1\Leftrightarrow x_2=x_1+1\forall m\)
Do đó khi m thay đổi thì \(A\left(x_1;x_2\right)\)nằm trên đường thẳng \(y=x+1\)cố định.
a: Khi m=2 thì pt sẽ là \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
b: \(\text{Δ}=\left(2m-3\right)^2-4\left(m^2-3m\right)\)
\(=4m^2-12m+9-4m^2+12m=9>0\)
Do đó: PT luôn có hai nghiệm phân biệt
Để PT có 2 nghiệm dương thì \(\left\{{}\begin{matrix}2m-3>0\\m^2-3m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{3}{2}\\m\in\left(-\infty;0\right)\cup\left(3;+\infty\right)\end{matrix}\right.\Leftrightarrow m\in\left(3;+\infty\right)\)
Để pt có 2 nghiệm trái dấu thì m(m-3)<0
=>0<m<3
PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong
b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)
c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\) quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)
\(4< m< 6\)
+) Cho pt: 2x2 + mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt
Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)
=> đpcm
+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m; Tìm m để x12 + x22 - x1x2 = 5 (*)
Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)
\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)
=> Pt có nghiệm với mọi m
ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)
(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)
thay (1) và (2) vào (*) ta có:
\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)
\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)
\(\Leftrightarrow5m^2+4m-8=0\)
\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)
Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x2 = 5
(Câu này mình nghĩ là tìm m để x12 + x22 + x1x2 = 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)
Học tốt nhé!
a, tính biệt thức delta rồi ép ra hđt thì nó luôn >0
b,theo vi-ét: ..... (tự tính nha bạn )
ta có : x12+x22= 2x1x2 +65
=> (x1+x2)2 - 2x1x2 = 2x1x2 +65
thay tổng và tích từ vi-ét chứa ẩn m vào rồi tính ra m
nhạt =.=
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
\(\Delta=4m^2-12m+9-4\left(m^2-3m\right)=9>0;\forall m\)
Phương trình luôn có 2 nghiệm với mọi m
Đặt \(f\left(x\right)=x^2-\left(2m-3\right)x+m^2-3m\)
Để pt có 2 nghiệm thỏa mãn \(1< x_1< x_2< 6\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)>0\\f\left(6\right)>0\\1< \frac{x_1+x_2}{2}< 6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+4>0\\m^2-15m+54>0\\2< 2m-3< 12\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\\\frac{5}{2}< m< \frac{15}{2}\end{matrix}\right.\) \(\Rightarrow4< m< \frac{15}{2}\)