Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=4 thì phương trình trở thành \(x^2-4x+3=0\)
=>(x-3)*(x-1)=0
=>x=3 hoặc x=1
b: \(x_1+x_2=m\)
\(x_1x_2=m-1\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\left(m-1\right)=m^2-2m+2\)
\(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\)
\(=\left(m^2-2m+2\right)^2-2\cdot\left(m-1\right)^2\)
\(=m^4+4m^2+4-4m^3+4m^2-8m-2m^2+4m-2\)
\(=m^4-4m^3+2m^2-4m+2\)
Để pt có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4-4\left(m-1\right)\ge0\)\(\Leftrightarrow2\ge m\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(1\right)\\x_1x_2=m-1\end{matrix}\right.\)
\(x_1^4-x_1^3=x_2^4-x_2^3\)
\(\Leftrightarrow\left(x_1^4-x_2^4\right)-\left(x_1^3-x_2^3\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)-\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[2\left(x_1^2+x_2^2\right)-x_1^2-x_1x_2-x_2^2\right]=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)=0\)
\(\Leftrightarrow x_1-x_2=0\) (2) ( vì \(x_1^2-x_1x_2+x_2^2>0;\forall x,y\))
Từ (1) (2) \(\Rightarrow x_1=x_2=1\)
\(\Rightarrow x_1x_2=m-1=1\) \(\Leftrightarrow m=2\) (Thỏa)
Vậy...
\(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1.x_2}\)
\(=\sqrt{\left(2m\right)^2-4\left(-2m-5\right)}=\sqrt{4m^2+8m+20}=\sqrt{4\left(m+1\right)^2+16}\)
\(\ge\sqrt{16}=4\)
Đối chiếu \(m+1=0\Leftrightarrow m=-1\) với điều kiện có 2 nghiệm phân biệt của phương trình rồi kết luận.
Ta có:
\(\Delta=\left(m+2\right)^2-4\left(m-1\right)=m^2+4m+4-4m+4=m^2+8>0\left(\forall m\right)\)
=> PT luôn có 2 nghiệm phân biệt với mọi GT của m
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m-1\end{cases}}\)
Thay vào A ta được:
\(A=x_1^2+x_2^2-3x_1x_2\)
\(A=\left(x_1+x_2\right)^2-5x_1x_2\)
\(A=\left(-m-2\right)^2-5\left(m-1\right)\)
\(A=m^2+4m+4-5m+5=m^2-m+9\)
\(A=\left(m^2-m+\frac{1}{4}\right)+\frac{35}{4}\)
\(A=\left(m-\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\left(\forall m\right)\)
Dấu "=" xảy ra khi: \(m=\frac{1}{2}\)
Vậy \(Min_A=\frac{35}{4}\Leftrightarrow m=\frac{1}{2}\)
Δ = b2 - 4ac = ( m + 2 )2 - 4( m - 1 ) = m2 + 4m + 4 - 4m + 4 = m2 + 8 ≥ 8 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt với mọi m
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
Khi đó : A = x12 + x22 - 3x1x2 = ( x1 + x2 )2 - 5x1x2
= ( -m - 2 )2 - 5( m - 1 ) = m2 + 4m + 4 - 5m + 5
= m2 - m + 9 = ( m - 1/2 )2 + 35/4 ≥ 35/4 ∀ m
Dấu "=" xảy ra <=> m = 1/2. Vậy MinA = 35/4
a, Vì 1 < x1 < x2 < 6 nên pt đã cho có 2 nghiệm dương phân biệt
Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\m< 0\left(h\right)m>3\end{cases}}\)
\(\Leftrightarrow m>3\)
Có \(\Delta=9>0\)
Nên pt có 2 nghiệm phân biệt \(x_1=\frac{2m-3-3}{2}=m-3\)
\(x_2=\frac{2m-3+3}{2}=m\) (Do m - 3 < m nên x1 < x2 thỏa mãn đề bài)
Vì \(1< x_1< x_2< 6\)
\(\Rightarrow\hept{\begin{cases}m-3>1\\m< 6\end{cases}}\)
\(\Leftrightarrow4< m< 6\)(Thỏa mãn)
c, C1_) Có \(x_1^2+x_2^2=\left(m-3\right)^2+m^2\)
\(=m^2-6m+9+m^2\)
\(=2m^2-6m+9\)
\(=2\left(m^2-3m+\frac{9}{4}\right)+\frac{9}{2}\)
\(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)
C2_) Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)
Có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(2m-3\right)^2-2m^2+6m\)
\(=4m^2-12m+9-2m^2+6m\)
\(=2m^2-6m+9\)
\(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Dấu "=" khi \(m=\frac{3}{2}\)