K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

theo vi-ec ta có: \(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=2\\P=x_1.x_2=\dfrac{c}{a}=-15\end{matrix}\right.\)

\(Q=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1.x_2}=\sqrt{2^2-4.\left(-15\right)}=8\)

26 tháng 5 2019

 Vì \(x_2\)là nghiệm của phương trình

=> \(x_2^2-5x_2+3=0\)

=> \(x_2+1=x^2_2-4x_2+4=\left(x_2-2\right)^2\)

Theo viet ta có

\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2_{ }=3\end{cases}}\)=> \(x_1^2+x_2^2=19\)

Khi đó

\(A=||x_1-2|-|x_2-2||\)

=> \(A^2=\left(x^2_1+x_2^2\right)-4\left(x_1+x_2\right)+8-2|\left(x_1-2\right)\left(x_2-2\right)|\)

=> \(A^2=19-4.5+8-2|3-2.5+4|=1\)

Mà A>0(đề bài)

=> A=1

Vậy A=1

Câu 1: 

a: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-14x+49-2x-1=0\\x< =7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-16x+48=0\\x< =7\end{matrix}\right.\Leftrightarrow x=4\)

Câu 2: 

\(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot4=4m^2-16\)

Để phương trình có hai nghiệm thì (m-2)(m+2)>=0

=>m>=2 hoặc m<=-2

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow x_1^2+x_2^2+2x_1+2x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow4m^2+4m-8=0\)

=>(m+2)(m-1)=0

=>m=-2(nhận) hoặc m=1(loại)

NV
23 tháng 5 2019

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\Leftrightarrow-\left(m^2-4\right)< 0\Rightarrow\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

Do \(x_1< x_2\Rightarrow x_1< 0< x_2\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{matrix}\right.\)

\(\left|x_1\right|>\left|x_2\right|\Leftrightarrow-x_1>x_2\Leftrightarrow x_1+x_2< 0\Leftrightarrow\frac{-\left(m+3\right)}{-1}< 0\Rightarrow m< -3\)

17 tháng 8 2020

Lời giải:
Để PT có 2 nghiệm thì $\Delta'=(m+1)^2-2(m^2+4m+3)=-(m+1)(m+5)\geq 0$

$\Leftrightarrow -5\leq m\leq -1$

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-(m+1)\\ x_1x_2=\frac{m^2+4m+3}{2}\end{matrix}\right.\)

Khi đó:
\(A=|\frac{m^2+4m+3}{2}+2(m+1)|=\frac{|(m+1)(m+7)|}{4}=\frac{-(m+1)(m+7)}{4}\) do $m\in [-5;-1]$

Mà:

$-(m+1)(m+7)=-(m^2+8m+7)=9-(m^2+8m+16)=9-(m+4)^2\leq 9$ với mọi $m\in [-5;-1]$

$\Rightarrow A\leq \frac{9}{4}$
Vậy $A_{\max}=\frac{9}{4}$ khi $m=-4$

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:
Để PT có 2 nghiệm thì $\Delta'=(m+1)^2-2(m^2+4m+3)=-(m+1)(m+5)\geq 0$

$\Leftrightarrow -5\leq m\leq -1$

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-(m+1)\\ x_1x_2=\frac{m^2+4m+3}{2}\end{matrix}\right.\)

Khi đó:
\(A=|\frac{m^2+4m+3}{2}+2(m+1)|=\frac{|(m+1)(m+7)|}{4}=\frac{-(m+1)(m+7)}{4}\) do $m\in [-5;-1]$

Mà:

$-(m+1)(m+7)=-(m^2+8m+7)=9-(m^2+8m+16)=9-(m+4)^2\leq 9$ với mọi $m\in [-5;-1]$

$\Rightarrow A\leq \frac{9}{4}$
Vậy $A_{\max}=\frac{9}{4}$ khi $m=-4$

1: \(\text{Δ}=\left(-m\right)^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: m-2<0

=>m<2

2: \(\Leftrightarrow\dfrac{x_1^2+1}{x_1}\cdot\dfrac{x_2^2+1}{x_2}=9\)

\(\Leftrightarrow\dfrac{\left(x_1\cdot x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=9\)

\(\Leftrightarrow\dfrac{\left(m-2\right)^2+\left(-m\right)^2-2\left(m-2\right)+1}{m-2}=9\)

\(\Leftrightarrow m^2-4m+4+m^2-2m+4+1=9m-18\)

\(\Leftrightarrow2m^2-6m+9-9m+18=0\)

=>2m^2-15m+27=0

hay \(m\in\varnothing\)

3: =>m=0

20 tháng 11 2022

\(\Delta=\left(2m-2\right)^2-4\cdot2\cdot\left(m^2-1\right)\)

\(=4m^2-8m+4-8m^2+8\)

\(=-4m^2-8m+12\)

Để phương trình có hai nghiệm phân biệt thì -4m^2-8m+12>0

=>4m^2+8m-12<0

=>m^2+2m-3<0

=>(m+3)(m-1)<0

=>-3<m<1

\(A=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=\left(\dfrac{2m-2}{2}\right)^2-4\cdot\dfrac{m^2-1}{2}\)

\(=\left(m-1\right)^2-2\left(m^2-1\right)\)

\(=m^2-2m+1-2m^2+2=-m^2-2m+3\)

\(=-\left(m^2+2m-3\right)\)

\(=-\left(m^2+2m+1-4\right)\)

\(=-\left(m+1\right)^2+4< =4\)

Dấu = xảy ra khi m=-1

28 tháng 11 2017

Để phương trình có hai nghiệm thì \(\Delta\ge0\)\(\Leftrightarrow m^2-4\ge0\) \(\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).
Theo định lý Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=1\end{matrix}\right.\).
Khi đó: \(A=\dfrac{\left(x_1-x_2\right)^2}{x_1+x_2-1}=\dfrac{\left(x_1+x_2\right)^2-4x_1x_2}{x_1+x_2-1}=\dfrac{\left(-m\right)^2-4.1}{-m-1}\)\(=-\dfrac{m^2-4}{m+1}\)\(=-\dfrac{m\left(m+1\right)-\left(m+1\right)-3}{m+1}\)\(=-m-1-\dfrac{3}{m+1}\).
Để A có giá trị nguyên thì \(m+1\inƯ\left(3\right)\) .
Suy ra \(m+1\in\left\{-1;1;-3;3\right\}\).
m + 1 = -1 thì m = - 2.
m + 1 = 1 thì m = 0. (loại).
m + 1 = -3 thì m = -4.
m + 1 = 3 thì m = 2.