\(x^2-2m-m^2-1=0\)

a) cm pt luôn có nghiệm vs mọi m (CÂU NÀY LM DK RỒI )

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

23 tháng 2 2019

\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)

a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)

\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\) 

\(\Leftrightarrow4>0\)(luôn đúng)

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

b) Để t nghĩ tí

23 tháng 2 2019

ý b kìa ý a mình biết rồi

3 tháng 5 2019

bạn làm theo hướng dẫn mình nèâCho phÆ°Æ¡ng trình: x^2 - 2mx + 2m - 2 = 0 (1) (m là tham sá»),Giải phÆ°Æ¡ng trình (1) khi m = 1.,Toán há»c Lá»p 9,bài tập Toán há»c Lá»p 9,giải bài tập Toán há»c Lá»p 9,Toán há»c,Lá»p 9

3 tháng 5 2019

\(a,\Delta=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)

Nên pt đã cho luôn có 2 nghiệm phân biệt với mọi m

b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)

Ta có \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=1\)

\(\Leftrightarrow\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=1\)

\(\Leftrightarrow\frac{2\left(m-1\right)+3}{m^2+2}=1\)

\(\Leftrightarrow\frac{2m+1}{m^2+2}=1\)

\(\Leftrightarrow2m+1=m^2+2\)

\(\Leftrightarrow m^2-2m+1=0\)

\(\Leftrightarrow\left(m-1\right)^2=0\)

\(\Leftrightarrow m=1\)

3 tháng 11 2019

câu a bạn áp dụng hệ thức Viet rồi rút m và thay vào cái kia r tìm ra thôi

haha

3 tháng 11 2019

bạn làm help mik vs

8 tháng 3 2018

a, Khi m = 0 thì : 

pt <=> x^2+2x-3 = 0 

<=> (x-1).(x+3) = 0

<=> x-1=0 hoặc x+3=0

<=> x=1 hoặc x=-3

Tk mk nha

21 tháng 5 2019

\(a)\) Ta có : \(\Delta=\left(-m\right)^2-4\left(m-3\right)=m^2-4m+12=\left(m^2-4m+4\right)+8=\left(m-2\right)^2+8>0\)

Vậy pt (1) có hai nghiệm phân biệt với mọi m 

\(b)\) Có \(x_1^2+x_2^2=5\)\(\Leftrightarrow\)\(\left(x_1+x_2\right)^2-2x_1x_2=5\) (*) 

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-3\end{cases}}\)

(*) \(\Leftrightarrow\)\(m^2-2\left(m-3\right)=5\)

\(\Leftrightarrow\)\(m^2-2m+1=0\)

\(\Leftrightarrow\)\(m=1\)

Vậy để \(x_1^2+x_2^2=5\) thì \(m=1\)

\(c)\)......... -_- 

22 tháng 5 2019

Theo hệ thức Vi et( ý b)  \(\hept{\begin{cases}X_1+X_2=m\\X_1.X_2=m-3\end{cases}\Rightarrow}X_1.X_2=X_1+X_2-3\)(thế \(X_1+X_2=m\)vô phương trình dưới)

Vậy hệ thức liên hệ giữa X1 X2 không chứa m là \(X_1X_2=X_1 +X_2-3\)