K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2023

loading...  

a*c<0

=>Phương trình luôn có hai nghiệm

x1^2+x2^2=12

=>(x1+x2)^2-2x1x2=12

=>(2m)^2-2*(-2)=12

=>4m^2+4=12

=>m^2+1=3

=>m^2=2

=>\(m=\pm\sqrt{2}\)

NV
30 tháng 3 2023

\(ac=-2< 0\Rightarrow\) phương trình đã cho luôn có 2 nghiệm (trái dấu) 

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2\end{matrix}\right.\)

\(x_1^2+x_2^2=12\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=12\)

\(\Leftrightarrow4m^2+4=12\)

\(\Rightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?

PT cuối cũng bị lỗi.

Bạn xem lại đề!

1 tháng 4 2021

Em sửa rồi ấy ạ

18 tháng 6 2023

a)

Thế m = 2 vào phương trình được: \(x^2-4x+2+1=0\Leftrightarrow x^2-4x+3=0\)

nhẩm nghiệm có a + b + c = 0 (1 - 4 + 3 = 0) nên: \(x_1=1,x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Vậy phương trình có tập nghiệm \(S=\left\{1;3\right\}\)

b) \(\Delta'=\left(-2\right)^2-\left(m+1\right)=4-m-1=3-m\)

Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow3-m\ge0\Rightarrow m\le3\)

Theo vi ét có \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+1\end{matrix}\right.\)

Theo đề: \(x_1^2+x_2^2=5\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5\left(x_1+x_2\right)=0\)

\(\Leftrightarrow4^2-2\left(m+1\right)-5.4=0\)

\(\Leftrightarrow16-20-2m-2=0\)

\(\Leftrightarrow-6-2m=0\Rightarrow m=-\dfrac{6}{2}=-3\) (thỏa mãn)

Vậy m = -3 là giá trị cần tìm.

a: Khi m=2 thì pt sẽ là x^2-4x+3=0

=>x=1; x=3

b: =>(x1+x2)^2-2x1x2-5(x1+x2)=0

=>4^2-2(m+1)-5*4=0

=>-4-2(m+1)=0

=>m+1=-2

=>m=-3

27 tháng 5 2021

PT có 2 nghiệm phân biệt`<=> \Delta' >0`

`<=> m^2-1>0`

`<=> m<-1 ; 1 <m`

Viet: `x_1+x_2=2m`

`x_1x_2=1`

Theo đề: `x_1^2+x_2^2=8`

`<=> (x_1+x_2)^2-2x_1x_2=8`

`<=> 4m^2-2=8`

`<=> 4m^2 - 10=0`

`<=>` \(\left[{}\begin{matrix}m=\dfrac{\sqrt{10}}{2}\\m=-\dfrac{\sqrt{10}}{2}\end{matrix}\right.\)

Vậy `m=\pm \sqrt10/2`.

27 tháng 5 2021

nhanh đi đang gấp lắm

22 tháng 8 2019

a) Với m= 2, ta có phương trình:  x 2 + 2 x − 3 = 0

Ta có:  a + b + c = 1 + 2 − 3 = 0                                                             

Theo định lý Viet, phương trình có 2 nghiệm: 

x 1 = 1 ;   x 2 = − 3 ⇒ S = 1 ;   − 3 .                                                                             

b) Chứng minh rằng phương trình luôn có nghiệm  ∀ m .

Ta có:  Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ;    ∀ m                                           

Vậy phương trình luôn có nghiệm  ∀ m .                                              

c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m                                                             

Ta có:

x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0                  

Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ;   m 2 = 3 2                                                  

Vậy m= -1 hoặc m= 3/2 

Δ=(m+1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24

=>Phương trình luôn có hai nghiệm pb

x1^2+x2^2+(x1-2)(x2-2)=11

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2-7=0

=>m^2-2m-8=0

=>(m-4)(m+2)=0

=>m=4 hoặc m=-2