K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

|x1|=3|x2|

=>|2m+2-x2|=|3x2|

=>4x2=2m+2 hoặc -2x2=2m+2

=>x2=1/2m+1/2 hoặc x2=-m-1

Th1: x2=1/2m+1/2

=>x1=2m+2-1/2m-1/2=3/2m+3/2

x1*x2=m^2+2m

=>1/2(m+1)*3/2(m+1)=m^2+2m

=>3/4m^2+3/2m+3/4-m^2-2m=0

=>m=1 hoặc m=-3

TH2: x2=-m-1 và x1=2m+2+m+1=3m+3

x1x2=m^2+2m

=>-3m^2-6m-3-m^2-2m=0

=>m=-1/2; m=-3/2

4 tháng 3 2018

có \(\Delta'=\left[-\left(m-1\right)\right]^2-m^2+m+5\)

\(\Delta'=m^2-2m+1-m^2+m+5\)

\(\Delta'=-m+6\)

để pt (1) có 2 nghiệm \(x_1;x_2\) \(\Leftrightarrow-m+6>0\)

\(\Leftrightarrow m< 6\)

theo định lí \(Vi-et\) \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m^2-m-5\end{cases}}\)

theo bài ra \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{10}{3}=0\)

\(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}+\frac{10}{3}=0\)   ( \(x_1.x_2\ne0\Leftrightarrow m^2-m-5\ne0\))

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1.x_2}{x_1.x_2}=\frac{-10}{3}\)

\(\Leftrightarrow\frac{\left(2m-2\right)^2-2.\left(m^2-m-5\right)}{m^2-m-5}=-\frac{10}{3}\)

\(\Leftrightarrow\frac{4m^2-8m+4-2m^2+2m+10}{m^2-m-5}=\frac{-10}{3}\)

\(\Leftrightarrow\left(2m^2-6m+14\right).3=-10.\left(m^2-m-5\right)\)

\(\Leftrightarrow6.\left(m^2-3m+7\right)=-10.\left(m^2-m-5\right)\)

\(\Leftrightarrow-3m^2+9m-21=5m^2-5m-25\)

\(\Leftrightarrow-3m^2+9m-21-5m^2+5m+25=0\)

\(\Leftrightarrow-8m^2+14m+4=0\)

\(\Leftrightarrow4m^2-7m-2=0\)  \(\left(2\right)\)

từ PT (2) có \(\Delta=\left(-7\right)^2-4.4.\left(-2\right)=49+32=81>0\Rightarrow\sqrt{\Delta}=9\)

vì \(\Delta>0\) nên PT có 2 nghiệm phân biệt 

\(m_1=\frac{7-9}{8}=\frac{-1}{4}\)  ( TM ĐK 

\(m_2=\frac{7+9}{8}=2\)                                  \(m< 6\)và \(m^2-m-5\ne0\)

4 tháng 3 2018

Bài này bạn áp dụng vi-ét là ra ngay nha !

Chúc bạn học tốt !

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
13 tháng 5 2019

Bạn tham khảo tại đây nhé:

Câu hỏi của KHÔNG CẦN BIẾT - Toán lớp 7 - Học toán với OnlineMath

a, thay m = 3 vào pt ta đc

x2  - ( 2 . 3 +1)x + 2.3 = 0

x2  - 7x + 6 =0

ta có a + b+c= 1 -7 + 6=0

\(\Rightarrow\)pt có 2 nghiệm pb x1 = 1 

                                       x2 = 6

b, x2 - (2m +1 )x + 2m=0

 \(\Delta\)= [ - (2m + 1 )]2  - 4.2m

        = 4m2 + 4m + 1 - 8m 

          = 4m2 - 4m + 1 

         = (2m-1)2 \(\ge\)\(\forall\)m

để pt có 2 nghiệm pb thì   2m - 1 \(\ne\)

                                          m \(\ne\)1/2

theo hệ thức vi ét ta có

x1 + x2 = 2m + 1

x1 x2 = 2m

ta có | x1| - |x2| = 2

       ( |x1| - |x2| )2 = 4

       x12  - 2 |x1x2| + x22   =4

        x12 + 2 x1x2 + x22 - 2x1x2 - 2 | x1x2| = 4

  ( x1 + x2)2  - 2 |x1x2| = 4

(2m + 1 )2 - 2|2m|=4   (1 )

+, nếu 2m \(\ge\)\(\Rightarrow\)\(\ge\)0 thì

(1)\(\Leftrightarrow\)(2m + 1)2  - 4m = 4

                   4m2 + 4m + 1 - 4m = 4

                     4m2 = 3

                        m2 = 3/4

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{3}}{2}\left(tm\right)\\m=-\frac{\sqrt{3}}{4}\left(ktm\right)\end{cases}}\)

+, 2m < 0 suy ra m < 0 thì 

(1) : (2m + 1 )2  + 4m =4

          4m2 + 4m + 1 + 4m = 4

           4m2 + 8m - 3 =0

       \(\Delta\)= 64 + 4.4.3 = 112 > 0

pt có 2 nghiệm pb x1 = \(\frac{-8+\sqrt{112}}{8}\)\(\frac{-2+\sqrt{7}}{2}\)(ko tm)

                                x2 = \(\frac{-2-\sqrt{7}}{2}\)(tm)

vậy m \(\in\){\(\frac{\sqrt{3}}{2}\)\(\frac{-2-\sqrt{7}}{2}\)} thì ...........

ko bt có đúng ko nữa 

#mã mã#

20 tháng 6 2021

a) Ta có  : \(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)

Để pt có 2 nghiệm phân biêt \(\Leftrightarrow\Delta'>0\Leftrightarrow m< -1\)

b) Theo hệ thức Viet \(\hept{\begin{cases}S=x_1+x_2=-2\left(m+1\right)\\P=x_1x_2=m^2+4m+3\end{cases}}\)

\(\Rightarrow A=m^2+4m+3+4\left(m+1\right)=m^2+4m+3+4m+4=m^2+8m+7\)

c) Ta có : \(A=m^2+8m+7=m^2+8m+16-9=\left(m+4\right)^2-9\ge-9\)

Dấu " = " xảy ra khi <=> m = -4 ( tm m < -1 )

Vậy minA = -9 tại m = -4