K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

\(a,x^2-4x+4y^2+12y+13\)

Ta có : 

\(A=x^2-4x+4y^2+12y+13\)

\(=\left(x^2-4x+2^2\right)+\left(\left(2y\right)^2+12y+3^2\right)\)

\(=\left(x-2\right)^2+\left(2y+3\right)^2\)

Vì \(\left(x-2\right)^2\ge0\)\(\forall x\in R\)

    \(\left(2y+3\right)^2\ge0\) \(\forall x\in R\)

\(\Rightarrow A=x^2-4x+4y^2+12y+13\ge0\) \(\forall x\in R\)

Dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2=0\\2y+3=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{3}{2}\end{cases}}\)

Vậy \(min_A=0\) khi \(x=1\) và \(y=-\frac{3}{2}\) 

1 tháng 8 2018

\(X=\)\(-2\)

\(X=3\)

\(X=-4\)

\(X=1,5\)

1 tháng 8 2018

a/ \(\left(x-4\right)^2-36=0\)

<=> \(\left(x-4-6\right)\left(x-4+6\right)=0\)

<=> \(\left(x-10\right)\left(x+2\right)=0\)

<=> \(\orbr{\begin{cases}x-10=0\\x+2=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)

b/ \(\left(x+8\right)^2=121\)

<=> \(\left(x+8\right)^2-121=0\)

<=> \(\left(x+8-11\right)\left(x+8+11\right)=0\)

<=> \(\left(x-3\right)\left(x+19\right)=0\)

<=> \(\orbr{\begin{cases}x-3=0\\x+19=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=3\\x=-19\end{cases}}\)

d/ \(4x^2-12x+9=0\)

<=> \(\left(2x\right)^2-2.2x.3+3^2=0\)

<=> \(\left(2x-3\right)^2=0\)

<=> \(2x-3=0\)

<=> \(x=\frac{3}{2}\)

16 tháng 3 2020

câu 1

a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)

b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)

Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được

\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)

16 tháng 3 2020

c) Để phân thức trên có giá trị nguyên thì :

\(3⋮x-2\)

=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)

=>\(x\in\left\{1,3,-1,5\right\}\)

zậy ....

21 tháng 12 2018

chịu rồi bạn ạ

21 tháng 12 2018

\(Taco:\)

\(A=2\left(3x+1\right)\left(x-1\right)-3\left(2x-3\right)\left(x-4\right)\)

\(A=\left(6x+2\right)\left(x-1\right)-\left(6x-9\right)\left(x-4\right)\)

\(A=\left(6x^2-4x-2\right)-\left(6x^2-24x-9x-36\right)\)

\(A=6x^2-4x-2-6x^2+33x+36=29x+34\)

\(b,x=2\Rightarrow A=58+34=92\)

\(A=-20\Leftrightarrow29x=-20-34=-54\Leftrightarrow x=\frac{-54}{29}\)

\(x^2\ge0.\Rightarrow A+x^2=x\left(x+29\right)+34\ge-176,25\)

Dấu "=" xảy ra khi: x(x+29) đạtGTNN

<=> x=-14,5

17 tháng 10 2016

a) \(A=x^2+x+1\)

\(A=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Có: \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

Vậy: \(Min_A=\frac{3}{4}\) tại \(x=-\frac{1}{2}\)

b) \(B=2+x-x^2\)

\(B=\frac{9}{4}-x^2+x-\frac{1}{4}\)

\(B=\frac{9}{4}-\left(x-\frac{1}{2}\right)^2\)

Có: \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\frac{9}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{9}{4}\)

Dấu = xảy ra khi: \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Vậy: \(Max_B=\frac{9}{4}\) tại \(x=\frac{1}{2}\)

c) \(C=x^2-4x+1\)

\(C=x^2-4x+4-3\)

\(C=\left(x-2\right)^2-3\)

Có: \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-3\ge-3\)

Dấu = xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy: \(Min_C=-3\) tại \(x=2\)

Mấy bài kia tương tự, riêng bài g

g) \(G=h\left(h+1\right)\left(h+2\right)\left(h+3\right)\)

\(G=\left(h^2+3h\right)\left(h^2+3h+2\right)\)

Đặt: \(t=h^2+3h+1\)

\(\Leftrightarrow\hept{\begin{cases}h^2+3h=t-1\\h^2+3h+2=t+1\end{cases}}\)

\(\Leftrightarrow\left(h^2+3h\right)\left(h^2+3h+2\right)=\left(t-1\right)\left(t+1\right)=t^2-1=\left(h^2+3h+1\right)^2-1\)

Có: \(\left(h^2+3h+1\right)^2\ge0\Rightarrow\left(h^2+3h+1\right)^2-1\ge-1\)

Dấu = xảy ra khi: \(\left(h^2+3h+1\right)^2=0\Rightarrow h^2+3h+1=0\Rightarrow\left(h+\frac{3}{2}\right)^2-\frac{5}{4}=0\Rightarrow\orbr{\begin{cases}h=-\frac{\sqrt{5}}{2}-\frac{3}{2}\\h=\frac{\sqrt{5}}{2}-\frac{3}{2}\end{cases}}\)

Vậy: \(Min_G=-1\) tại \(\orbr{\begin{cases}h=-\frac{\sqrt{5}}{2}-\frac{3}{2}\\h=\frac{\sqrt{5}}{2}-\frac{3}{2}\end{cases}}\) 

8 tháng 2 2019

\(B=\frac{x^2+4x+85}{3\left(x+2\right)}=\frac{\left(x^2-14x+49\right)+\left(18x+36\right)}{3\left(x+2\right)}\)

\(=\frac{\left(x-7\right)^2+18\left(x+2\right)}{3\left(x+2\right)}=\frac{\left(x-7\right)^2}{3\left(x+2\right)}+6\ge6\forall x>0\)

Dấu "=" xảy ra khi: \(x-7=0\Leftrightarrow x=7\)