Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2-mx+m-1=0\left(a=1;b=-m;c=m-1\right)\)
Theo hệ thức Vi et ta có : \(x_1+x_2=m;x_1x_2=m-1\)
Theo bài ra ta có : \(A=x_1^2+x_2^2-6x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2\)Thay vào ta có pt mới : \(\Leftrightarrow m^2-6.\left(m-1\right)=m^2-6m+6\)
Vì \(m^2-6m+6\ne m^2-8m+8\)
Vậy \(A\ne m^2-8m+8\)
Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1\cdot x_2=m-1\end{matrix}\right.\)
A = \(x_1^2+x_2^2-6x_1x_2=\left(x_1+x_2\right)^2-8x_1x_2\)
\(\Leftrightarrow A=m^2-8\left(m-1\right)=m^2-8m+1\)
\(\Leftrightarrow A=\left(m-4\right)^2-15\ge-15\)
Dâu '='' xảy ra khi \(m-4=0\Leftrightarrow m=4\)
Vậy giá trị nhỏ nhất của A là -15 \(\Leftrightarrow m=4\)
Chết quên. Bạn xét \(\Delta>0\) đã nhé!
Từ đó suy ra điều kiện của m rồi mới kết luận m = 4 có thỏa mãn ko nhé!
\(\Delta=m^2-32\ge0\Rightarrow\left[{}\begin{matrix}m\le-4\sqrt{2}\\m\ge4\sqrt{2}\end{matrix}\right.\)
Từ Viet và điều kiện đề bài ta có: \(\left\{{}\begin{matrix}x_1=x_2^2\\x_1x_2=8\end{matrix}\right.\)
\(\Rightarrow x_2^3=8\Rightarrow x_2=2\Rightarrow x_1=4\)
Mà \(x_1+x_2=m\Rightarrow m=4+2=6\) (t/m)
Em thử nhá, sai thì em chịu.
\(\frac{1}{x_1^2}+\frac{1}{x_2^2}=8\Leftrightarrow x_1^2+x_2^2=8x_1^2x_2^2\) (với x1; x2 khác 0)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8x_1^2x_2^2\) (1)
Theo hệ thức Viet \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=\frac{-\left(m-1\right)}{2}\\x_1x_2=\frac{c}{a}=-\frac{m}{4}\end{matrix}\right.\)
Thay vào (1) suy ra: \(\frac{\left(m-1\right)^2}{4}+\frac{m}{2}=\frac{m^2}{2}\Leftrightarrow\frac{m^2-2m+1}{4}+\frac{2m}{4}-\frac{2m^2}{4}=0\)
\(\Leftrightarrow-m^2+1=0\Leftrightarrow m^2=1\Leftrightarrow m=\pm1\)
△ = b2 - 4ac = (-m)2 -4(-m-1) = m2 + 4m +4 = (m+2)2 ≥ 0 ∀m
Vậy pt đã cho luôn có nghiệm với mọi giá trị của m
Áp dụng Vi-et, ta có \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1\cdot x_2=-m-1\end{matrix}\right.\)
\(A=\frac{m^2+2m}{x_1^2+x_2^1+2}=\frac{m^2+2m}{\left(x_1+x_2\right)^2-2x_1x_2+2}\)=\(\frac{m^2+2m}{m^2-2\left(-m-1\right)+2}=\frac{m^2+2m}{m^2+2m+2+2}=\frac{m^2+2m}{m^2+2m+4}\)
\(=1-\frac{4}{m^2+2m+4}\)
(Tạm thời mk giải đến đó nha :< )
\(a)\) Ta có : \(\Delta=\left(-m\right)^2-4\left(m-3\right)=m^2-4m+12=\left(m^2-4m+4\right)+8=\left(m-2\right)^2+8>0\)
Vậy pt (1) có hai nghiệm phân biệt với mọi m
\(b)\) Có \(x_1^2+x_2^2=5\)\(\Leftrightarrow\)\(\left(x_1+x_2\right)^2-2x_1x_2=5\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-3\end{cases}}\)
(*) \(\Leftrightarrow\)\(m^2-2\left(m-3\right)=5\)
\(\Leftrightarrow\)\(m^2-2m+1=0\)
\(\Leftrightarrow\)\(m=1\)
Vậy để \(x_1^2+x_2^2=5\) thì \(m=1\)
\(c)\)......... -_-
Theo hệ thức Vi et( ý b) \(\hept{\begin{cases}X_1+X_2=m\\X_1.X_2=m-3\end{cases}\Rightarrow}X_1.X_2=X_1+X_2-3\)(thế \(X_1+X_2=m\)vô phương trình dưới)
Vậy hệ thức liên hệ giữa X1 X2 không chứa m là \(X_1X_2=X_1 +X_2-3\)
Ta có : \(x^2-6x+2m+1=0\left(a=1;b=-6;c=2m+1\right)\)
\(\Delta=\left(-6\right)^2-4\left(2m+1\right)=36-8m-4=32-8m\)
Để phương trình có 2 nghiệm phân biệt \(32-8m>0\)hay \(\Delta>0\)
\(\Leftrightarrow8m>32\Leftrightarrow m< 4\)
Áp dụng hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{6}{1}=6\\P=x_1x_2=\frac{c}{a}=\frac{2m+1}{1}=2m+1\end{cases}}\)(*)
Theo bài ra ta cớ : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=8\)Tự thay vào làm nốt nhé !
bạn làm sai phần tìm đk m rồi nhé
Để phương trình có 2 nghiệm : \(\Delta>0\)
\(< =>32-8m>0\)
\(< =>m>\frac{-32}{-8}=4\)
Theo viet \(\hept{\begin{cases}x_1x_2=2m+1\\x_1+x_2=6\end{cases}}\)
Khi đó : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=8\)
\(< =>\frac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=8\)
\(< =>8\left(2m+1\right)^2+2x_1x_2=x_1^2+x_2^2+2x_1x_2\)
\(< =>8\left(4m^2+4m+1\right)+2\left(2m+1\right)=\left(x_1+x_2\right)^2\)
\(< =>24m^2+24m+8+4m+2=36\)
\(< =>24m^2+28m-26=0\)
\(< =>\orbr{\begin{cases}m=\frac{-7+\sqrt{205}}{12}< 4\\m=\frac{-7-\sqrt{205}}{12}< 4\end{cases}}\left(ktmđk:m>4\right)\)
Vậy không có giá trị nào m thỏa mãn đẳng thức trên