Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m=0\) là okee rồi nè
còn \(x_1=x_2\) thì như sau :
\(\Leftrightarrow x_1-x_2=0\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=0^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)
Tới đây rồi áp dụng cái Vi-ét vào là được m còn lại nhe.
Xét phương trình (1) có: \(\Delta=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=8-4m\)
Để phương trình (1) có 2 nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow8-4m\ge0\Leftrightarrow m\le2\)
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=m-1\end{matrix}\right.\)
Theo đề bài ta có:
\(x_1^2+x_2^2=4m\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4m\)
\(\Leftrightarrow4-2m+2=4m\)
\(6m=6\Leftrightarrow m=1\)(tmđk)
Vậy để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2=4m\) thì m=1
dùng phương pháp Vi-ét ko hoàn toàn
(mình đăng lên youtube rồi đấy)
\(\Delta^'=\left(-1\right)^2-\left(m-1\right)=2-m\)
Để PT có nghiệm thì: \(m\le2\)
Khi đó theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m-1\end{cases}}\)
Ta có: \(x_1^4-x_1^3=x_2^4-x_2^3\)
\(\Leftrightarrow\left(x_1^4-x_2^4\right)-\left(x_1^3-x_2^3\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)-\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[2\left(x_1^2+x_2^2\right)-x_1^2-x_1x_2-x_2^2\right]=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[4-3\left(m-1\right)\right]=0\)
Nếu \(x_1-x_2=0\Rightarrow x_1=x_2=1\Rightarrow m=1\left(tm\right)\)
Nếu \(4-3\left(m-1\right)=0\Rightarrow m=\frac{7}{3}\left(ktm\right)\)
Vậy m = 1