K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
9 tháng 12 2021
x2−2(m+1)x+m2+2=0x2−2(m+1)x+m2+2=0
Để phương trình có hai nghiệm x1,x2x1,x2 thì Δ′≥0Δ′≥0
⇔(m+1)2−m2−2≥0⇔(m+1)2−m2−2≥0
⇔2m−1≥0⇔m≥12⇔2m−1≥0⇔m≥12
Theo Vi-et ta có:
⇒{x1.x2=m2+2x1+x2=2(m+1)⇒P=m2+2−2.2(m+1)−6=m2−4m−8=(m−2)2−12(m−2)2≥0⇒P≥−12⇒{x1.x2=m2+2x1+x2=2(m+1)⇒P=m2+2−2.2(m+1)−6=m2−4m−8=(m−2)2−12(m−2)2≥0⇒P≥−12
Dấu "=" xảy ra ⇔m=2 (thỏa mãn).
Vậy m=2m=2 thì PP đạt giá trị nhỏ nhất là -12.
TT
0
Nói chung đề thế nào cũng làm được nhưng nghe có vẻ nó ngang thôi
\(m^2x+3m-2=m+x\left(1\right)\)
\(\Leftrightarrow\left(m^2-1\right)x+3m-2=0\)
nếu m=+-1 \(\Leftrightarrow0.x+-3-2=0\Rightarrow vonghiem\)
nếu m khác +-1 phương trình luôn có nghiệm duy nhất
\(x=\frac{2-3m}{m^2-1}\)
a) \(x_0>0\Rightarrow\frac{2-3m}{m^2-1}>0\Rightarrow\orbr{\begin{cases}m< -1\\\frac{2}{3}< m< 1\end{cases}}\)
b) pt vô nghiệm khi m=+-1
có nghiệm duy nhất x=....khi m khác +-1
Xem lại đề.