Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Bạn tự giải
b/ \(\Delta'=\left(m+2\right)^2-\left(m+1\right)=m^2+3m+3=\left(m+\frac{3}{2}\right)^2+\frac{3}{4}>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m
c/ Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+4\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)
\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)
\(\Leftrightarrow2m+4-4\left(m+1\right)=m^2\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
1) <=> 1 - sin2x + sin x + 1 = 0
<=> - sin2x + sin x = 0 <=> sinx.(1 - sin x) = 0 <=> sin x = 0 hoặc sin x = 1
+) sin x = 0 <=> x = k\(\pi\)
+) sin x = 1 <=> x = \(\frac{\pi}{2}+k2\pi\)
2) <=> 2cos x - 2(2cos2 x - 1) = 1 <=> -4cos2 x + 2cos x + 1 = 0
\(\Delta\)' = 5 => cosx = \(\frac{-1+\sqrt{5}}{-4}\) (Thỏa mãn) hoặc cosx = \(\frac{-1-\sqrt{5}}{-4}=\frac{\sqrt{5}+1}{4}\)(Thỏa mãn)
cosx = \(\frac{-1+\sqrt{5}}{-4}\) <=> x = \(\pm\) arccos \(\frac{-1+\sqrt{5}}{-4}\) + k2\(\pi\)
cosx = \(\frac{\sqrt{5}+1}{4}\) <=> x =\(\pm\) arccos \(\frac{\sqrt{5}+1}{4}\) + k2\(\pi\)
1) Có: m4 - m2 + 1 = (m2 - \(\frac{1}{2}\))2 + \(\frac{3}{4}\) > 0 với mọi m
|x2 - 1| = m4 - m2 + 1
<=> x2 - 1 = m4 - m2 + 1 (1) hoặc x2 - 1 = - ( m4 - m2 + 1 ) (2)
Rõ ràng : nếu x1 là nghiệm của (1) thì x1 không là nghiệm của (2)
Để pt đã cho 4 nghiệm phân biệt <=> pt (1) và (2) đều có 2 nghiệm phân biệt
(1) <=> x2 = m4 - m2 + 2 > 0 với mọi m => (1) luôn có 2 nghiệm phân biệt
(2) <=> x2 = - m4 + m2 . Pt có 2 nghiệm phân biệt <=> m2 - m4 > 0 <=> m2.(1 - m2) > 0
<=> m \(\ne\) 0 và 1 - m2 > 0
<=> m \(\ne\) 0 và -1 < m < 1
Vậy với m \(\ne\) 0 và -1 < m < 1 thì pt đã cho có 4 nghiệm pb
Bài 3:
a: Để pt có hai nghiệm trái dấu thì m+5<0
=>m<-5
b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)
\(=m^2+4m+4-4m-20=m^2-16\)
Để phương trình có hai nghiệm phân biệt thì m^2-16>0
=>m>4 hoặc m<-4
c: x1^2+x2^2=23
=>(x1+x2)^2-2x1x2=23
=>(m+2)^2-2(m+5)=23
=>m^2+4m+4-2m-10-23=0
=>m^2+2m-29=0
hay \(m=-1\pm\sqrt{30}\)
d: Để pt có hai nghiệm âm phân biệt thì
\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)
a/ Bạn tự giải
b/ \(\Leftrightarrow\left(x^2+4x+16\right)\left(x^2+4x+3\right)=m\)
Đặt \(x^2+4x+3=\left(x+2\right)^2-1=t\Rightarrow t\ge-1\)
Phương trình trở thành: \(\left(t+13\right)t=m\Leftrightarrow t^2+13t=m\) (1)
Để pt có nghiệm \(\Leftrightarrow\left(1\right)\) có ít nhất 1 nghiệm \(t\ge-1\)
\(f\left(t\right)=t^2+13t\) có \(a=1>0\); \(-\frac{b}{2a}=-\frac{13}{2}< -1\)
\(\Rightarrow f\left(t\right)\) đồng biến trên \([-1;+\infty)\)
\(\Rightarrow\) Để pt có nghiệm thì \(m\ge f\left(-1\right)\Rightarrow m\ge-12\)
Giúp vs đi mọi người...😣😣