K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 2 2017

Lời giải:

a) Với \(m=0\) phương trình trở thành:

\((x^2-2x-3)(x^2-2x+3)=0\Leftrightarrow (x-3)(x+1)(x^2-2x+3)=0\)

\(\Rightarrow\left[\begin{matrix}x-3=0\\x+1=0\\x^2-2x+3=0\end{matrix}\right.\) \(\Leftrightarrow \) \(\left[\begin{matrix}x=3\\x=-1\\\left(x-1\right)^2+2=0\left(vl\right)\end{matrix}\right.\)

Vậy \(x\in \left\{-1,3\right\}\)

b) Để PT có $4$ nghiệm phân biết thì phương trình \(x^2-2x+2m+3=0\) phải có hai nghiệm phân biệt khác \(-1\)\(3\)

Tức là \(\left\{\begin{matrix} \Delta' =1-(2m+3)>0\\ 3^2-2.3+2m+3\neq 0\\ (-1)^2-2(-1)+2m+3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m<-1\\ m\neq -3\\ \end{matrix}\right.\)

c) Áp dụng định lý Viet cho PT \(x^2-2x+2m+3=0\) có nghiệm thỏa mãn:\(\left\{\begin{matrix}x_3+x_4=2\\x_3x_4=2m+3\end{matrix}\right.\)

\(A=x_1x_2x_3x_4=-3x_3x_4=-3(2m+3)\)

Ta có với mọi \(x_3,x_4\in\mathbb{R}\) thì đều có \(x_3x_4\leq \left(\frac{x_3+x_4}{2}\right)^2=1\)

\(\Rightarrow -3x_3x_4\geq -3\) (khi nhân với số âm thì đổi dấu)

\(\Rightarrow A_{\min }=-3\Leftrightarrow m=-1\)

Câu b với c không liên quan đến nhau phải không? Nếu không thì không tìm được min đâu.

28 tháng 2 2017

sửa đề: pt \(\left(x^2-2x-3\right)\left(x^2-2x+2m+3\right)=0\)

NV
19 tháng 4 2022

Phương trình có nghiệm khi:

\(\Delta'=1-\left(m+3\right)\ge0\)

\(\Leftrightarrow m\le-2\)

23 tháng 3 2019

Bài 1 :

a )Thế \(m=1\) vào phương trình ta được :

\(2x^2-3x-2=0\)

\(\Leftrightarrow2x^2+x-4x-2=0\)

\(\Leftrightarrow x\left(2x+1\right)-2\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{-\frac{1}{2};2\right\}\)

b ) Theo hệ thức vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=\frac{6m-3}{2}\\x_1x_2=\frac{-3m+1}{2}\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(\frac{6m-3}{2}\right)^2-\frac{2\left(-3m+1\right)}{2}\)

\(=\frac{36m^2-36m+9}{4}+3m-1\)

\(=\frac{36m^2-36m+9+12m-4}{4}\)

\(=\frac{36m^2-24m+5}{4}\)

\(=\frac{36m^2-24m+4+1}{4}\)

\(=\frac{\left(6m-2\right)^2+1}{4}\ge\frac{1}{4}\)

Vậy GTNN của A là \(\frac{1}{4}\) . Dấu bằng xảy ra khi \(x=\frac{1}{3}\)

Δ=(-2)^2-4(m-3)

=4-4m+12=16-4m

Để phương trình có hai nghiệm dương phân biệt thì 16-4m>0 và m-3>0

=>m>3 và m<4

x1^2+x2^2=(x1+x2)^2-2x1x2

=2^2-2(m-3)=4-2m+6=10-2m

=>x1^2=10-2m-x2^2

x1^2+12=2x2-x1x2

=>10-2m-x2^2+12=2x2-m+3

=>\(-x_2^2+22-2m-2x_2+m-3=0\)

=>\(-x_2^2-2x_2-m+19=0\)

=>\(x_2^2+2x_2+m-19=0\)(1)

Để (1) có nghiệmthì 2^2-4(m-19)>0

=>4-4m+76>0

=>80-4m>0

=>m<20

=>3<m<4

10 tháng 6 2017

đề sai rồi

10 tháng 6 2017

Đề sai rồi nhé b

=>10x+15y=5m và -10x+2y=-2

=>17y=5m-2 và -5x+y=-1

=>y=5/17m-2/17 và 5x-y=1

=>y=5/17m-2/17 và 5x=1+y=5/17m+15/17

=>y=5/17m-2/17 và x=1/17m+5/17

x>0; y>0

=>5m-2>0 và m+5>0

=>m>2/5