Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(P=\left(x-4\right)^{\left(x-5\right)^{\left(x-6\right)^{\left(x+6\right)^{\left(x+5\right)}}}}\)
Mà : x=7
\(P=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}\)
\(P=9\)
Ta có P= (7-4)\(^{\left(7-5\right)^{\left(7-6\right)^{^{\left(7+6^{\left(7+5\right)}\right)}}}}\)
P=9
X= 7 =>
\(P=\left(x-4\right)^{\left(x-5\right)^{\left(x-6\right)^{\left(x+6\right)^{\left(x+5\right)}}}}=\left(7-4\right)^{^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}}\)
-> P= \(3^{2^{1^{13}}}\)
Tạch máy tính ta đc : 9
Thay x = 7 vào P , ta được P = (7 - 4)^(7 - 5)^(7 - 6)^(7 + 6)^(7 + 5) = 3^2^1^13^12 = 3^2 x 1^13^12 = 9 x 1 = 9
Vậy P = 9
Thay x=7 vào biểu thức, ta được:
P=(7-4)^(7-5)^(7-6)^(7+6)^(7+5)=3^2^1^13^12=3^2^1=3^2=9
thay x = 7 vào biểu thức, ta đc:
\(P=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}=3^{2^{1^{13^{12}}}}\)
\(=3^{2^1}=9\)
\(\left(x-6\right)^{\left(x+6\right)^{\left(x+5\right)}}=\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}=1^{13^{12}}=1\)
=> P(1) = \(\left(7-4\right)^{\left(7-5\right)^1}=3^2=9\)
a, \(P=\left(x-4\right)^{\left(x-5\right)^{\left(x-6\right)^{\cdot\left(x+6\right)^{\left(x+5\right)}}}}\)
Thay x = 7 ta được:
\(P=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}\)
\(P=3^{2^{1^{13^{12}}}}=3^2.1^{13^{12}}=9.1=9\)
b, Vì \(x-1=x-1\) nên lũy thừa của nó phải giống nhau
mà \(x+2\ne x+4\)
\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\) có nghiệm \(\Leftrightarrow\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
\(P=\left(x-4\right)^{\left(x-5\right)^{\left(x-6\right)^{\left(x+6\right)^{\left(x+5\right)}}}}=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}=3^{2^{1^{13^{12}}}}\)
\(=3^{2^1}=3^2=9\)
Thay x = 7 vào biểu thức ta có:
\(\left(x-4\right)^{\left(x-5\right)^{\left(x-6\right)^{\left(x+6\right)^{\left(x+5\right)}}}}=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}\)
\(=3^{2^{1^{13^{12}}}}\) . Vì 1 là số có mũ lên bao nhiêu cũng có kết quả là 1 nên:
\(3^{2^{1^{13^{12}}}}=3^2=9\)
Vậy P = 9
Chúc học tốt!