Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Bạn đánh nhầm \(\sqrt{x}+3\rightarrow\sqrt{x+3}\); \(\sqrt{x}-3\rightarrow\sqrt{x-3}\)
Sửa : \(ĐKXĐ:x\ne\pm\sqrt{3}\)
a) \(M=\frac{x-\sqrt{x}}{x-9}+\frac{1}{\sqrt{x}+3}-\frac{1}{\sqrt{x}-3}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
b) Để \(M=\frac{3}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{4}\)
\(\Leftrightarrow4\sqrt{x}+8=3\sqrt{x}+9\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)(tm)
Vậy để \(A=\frac{3}{4}\Leftrightarrow x=1\)
c) Khi x = 4
\(\Leftrightarrow M=\frac{\sqrt{4}+2}{\sqrt{4}+3}\)
\(\Leftrightarrow M=\frac{2+2}{2+3}\)
\(\Leftrightarrow M=\frac{4}{5}\)
Vậy khi \(x=4\Leftrightarrow M=\frac{4}{5}\)
1)\(M=\frac{x-7}{x-4\sqrt{x}+3}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}-3}\)(ĐKXĐ : \(x\ge0;x\ne1;x\ne9\))
\(=\frac{x-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
2) \(M>\frac{3}{4}\Leftrightarrow\frac{\sqrt{x}+3}{\sqrt{x}-1}>\frac{3}{4}\Leftrightarrow1+\frac{4}{\sqrt{x}-1}-\frac{3}{4}>0\Leftrightarrow\frac{4}{\sqrt{x}-1}+\frac{1}{4}>0\Rightarrow\sqrt{x}-1>0\Leftrightarrow x>1\)Vậy \(M>\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x>1\\x\ne9\end{cases}}\)
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
\(ĐK:x\ne\pm1\)
\(P=\frac{x}{x-1}+\frac{3}{x+1}-\frac{6x-4}{x^2-1}=\frac{x^2+x}{\left(x-1\right)\left(x+1\right)}+\frac{3x-3}{\left(x+1\right)\left(x-1\right)}-\frac{6x-4}{x^2-1}=\frac{x^2+x}{x^2-1}+\frac{3x-3}{x^2-1}-\frac{6x-4}{x^2-1}=\frac{x^2+4x-6x+1}{x^2-1}=\frac{x^2-2x+1}{x^2-1}=\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x-1}{x+1}\)
P= (x2-2x+1)/(x2-1)= (x-1)/(x+1)