K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

Để M nguyên thì 4n+9 chia hết cho 2n+3

<=> 2(2n+3) +3 chia hết cho 2n+3

=> 3 chia hết cho 2n+3

Vì n nguyên nên 2n+3 là ước của 3

Các ước của 3 là 3;1;-1;-3

Do đó,2n+3 thuộc {3;1;-1;-3}

=> n thuộc {0;-0,5;-2;-3}

Vì n nguyên nên n thuộc {0;-2;-3}

Vậy ...

b, chứng minh tương tự nhưng tử ko chia hết cho mẫu

5 tháng 4 2019

a) Để \(M=\frac{4n+9}{2n+3}\)\(\inℤ\)

\(\Rightarrow4n+9⋮2n+3\)

\(\Rightarrow\)\(2(2n+3)+3⋮2n+3\)

Mà 2(2n+3) chia hết cho 2n+3 

=> 2 chia hết cho 2n +3

=> 2n+3 \(\inƯ\left(3\right)\)

TA CÓ BẢNG SAU : ( Lập bảng nha )

phần b mik chưa nghĩ ra nha 

1 tháng 5 2016

n=0 chắc chắn đó nha

          Gọi d là ước chung nguyên tố của 2n + 7 và 5n + 2 thì:

     Ta có : 2n + 7 và 5n + 2 đều chia hết cho d

                => 5(2n + 7) và 2(5n + 2) chia hết cho d

                => 10n + 35 và 10n + 4 chia hết cho d

                => (10n + 35) - (10n + 4) chia hết cho d => 31 chia hết cho d

                => d = 31

      Để A tối giản thì d ko bằng 31

               => 2n + 7 ko chia hết cho 31

               => 2n + 7 - 31 ko chia hết cho 31

               => 2n - 28 ko chia hết cho 31

               => 2(n - 14) ko chia hết cho 31

               =>   n - 14 ko chia hết cho 31 ( vì 2 và 31 nguyên tố cùng nhau)

               =>   n - 14 ko bằng 31k 

               =>     n ko bằng 31k + 14( k thuộc Z )

       Vậy với n ko bằng 31k + 14 thì p/s A tối giản.

(BÀI NÀY TỚ HỌC RỒI NÊN CẬU YÊN TÂM)

16 tháng 7 2018

Ta thấy các phân số đã cho có dạng :

    \(\frac{5}{5}+(n+3);\frac{6}{6}(n+3);...;\frac{17}{17}(n+3)\)

Tức là có dạng \(\frac{a}{a}+(n+3)\)

Để các phân số đã cho tối giản  thì a và n + 3 phải nguyên tố cùng nhau

n + 3 phải nhỏ nhất và nguyên tố cùng nhau với các số 5;6;7;...;17

n + 3 phải là số nguyên tố nhỏ nhất lớn hơn 17

n + 3 = 19

=> n = 16

Vậy n = 16

13 tháng 3 2017

Ý 1 tớ chịu còn 2 ý sau để tớ giúp

Gỉa sử : 12n+1 chia hết cho d       ( d là ƯCLN)

              30n+2 chia hết cho d

=>  5(12n+1) chia hết cho d

      2(30n+2) chia hết cho d

=> 5(12n+1) - 2(30n+2) chia hết cho d

=>( 60n + 5) - (60n + 4)

=> 60n+5 - 60n-4 chia hết cho d

=> 1 chia hết cho d 

=> d=1

=> 12n+1/30n+2 tối giản ( đpcm )

Gỉa sử  8n+193 chia hết cho d         d nguyên tố 

             4n+3 chia hết cho d

=>  (8n+193) - 2 ( 4n+3) chia hết cho d

=>  (8n+193) - (8n+6) chia hết cho d 

=> 8n+193 - 8n -6 chia hết cho d 

=> 187 chia hết cho d

Do d nto =>d = 11;17

=> 8n+193 chia hết cho 11

4n+3 chia hết cho 11 

=>4(8n+193) chia hết cho 11

3( 4n+3 ) chia hết cho 11

=> 32n+772 chia hết cho 11

12n+9 chia hết cho 11

=> 33n-n+11.70+2 chia hết cho 11

11n+n+11-2 chia hết cho 11

=>-n+2 chia hết cho 11

n-2 chia hết cho 11

=> n-2 chia hết cho 11

=> n-2 = 11k(k thuộc N*)

=> n= 11k+2  (1)

d=17 ta có

8n+193 chia hết cho 17

4n+3 chia  hết cho 17

=>2(8n+193) chia hết cho 17

4(4n+3) chia hết cho 17

=. 16n+386 chia hết cho 17

16n+12 chia hết cho 17

=> 17n-n+17.22+12 chia hết cho 17

17n-n+12 chia hết cho 17

=> -n+12 chia hết cho 17

=> n-12 chia hết cho 17

=> n-12=17q (q thuộc N*)

=>n= 17q+12 (2)

Từ (1) và (2) => B rút gọn được khi n=11k+2 ; 17q+12

Do 150<n<170

=> n thuộc 156;165;167

Vậy n thuộc 156;165;167

       

             

13 tháng 3 2017

để A là PS thì n-3 khác 0 

=>n # 3

Để A có giá trị nguyên thì n+1 phải chia hết cho n-3

=>n-3 là Ư(n+1)

Ta có:n+1=(n-3)+4

=>n-3 là Ư(4)

TA có bảng.... 

Rồi đến đây bạn tự tính và kết luận là xong nhé

24 tháng 5 2016

Gọi UCLN(n+1;2n+3) = d, ta có:

n+1 chia hết cho d

=> 2n+2 chia hết cho d

2n + 3 chia hết cho d

=> (2n+3)-(2n+2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

(2n-2n)+(3-2) chia hết cho d

1 chia hết cho d

=> d thuốc Ư(1) ={1;-1}

=> \(\frac{n+1}{2n+3}\) là phân số tối giản

Chúc bạn học tốt!hihi

24 tháng 5 2016

Vì ps n+1 / 2n + 3 là ps tối giản nên n +1 và 2n +3 là 2 số nguyên tố cùng nhau
Gọi d là ƯC của n +1 và 2n + 3
Ta có : (2n +3 ) - ( 2(n+1) ) chia hết cho d
   Hay : (2n +3 ) - ( 2n +2 ) chia hết cho d
 =>         2n +3 - 2n - 2 chia hết cho d
   =>                     1 chia hết cho d => d ϵ Ư ( 1 ) = + 1
Vậy n + 1 / 2n + 3 là phân số tối giản