K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

bài 1 a, hình như có thêm đk là a+b+c=3

2 tháng 1 2018

Bài 4 nha

Áp dụng BĐT cô si ta có

\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)

Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1

3 tháng 1 2020

Dạng này dùng hệ số bât định làm gì cho mệt?

28 tháng 10 2018

toán lớp 1 gì mà ảo diệu quá...

28 tháng 10 2018

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{ab+bc}+\frac{c^4}{ac+bc}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}\)

\(=\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)

3 tháng 9 2018

Đây không phải toán lớp 1 đâu bạn

Tớ không biết vì tớ mới lớp 5

K mk nha

*Mio*

3 tháng 9 2018

Tự đăng bài rồi tự làm luôn à bn .

Đây ko pk là Toán lớp nhá 

Học tôt nhé bn

# MissyGirl #

29 tháng 12 2017

ta có hệ pt 

<=>\(\hept{\begin{cases}x^3-3x-2=y-2\\y^3-3y-2=z-2\\z^3-3z-2=2-x\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x+1\right)^2=y-2\\\left(y-2\right)\left(y+1\right)^2=z-2\\\left(z-2\right)\left(z+1\right)^2=2-x\end{cases}}}\)

nhân từng vế của 3 pt, ta có 

\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=-\left(x-2\right)\left(y-2\right)\left(z-2\right)\)

<=>\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\left[\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+1\right]=0\)

<=> x=2 hoặc y=2 hoặc z=2

đến đây bạn tự thay vào và giai tiếp nhé

30 tháng 12 2017

bạn làm cho ai vậy

26 tháng 5 2019

#)Trả lời :

   Toán lớp 1 ak a ??? chắc 2 năm ns em còn k lm đc :v 

26 tháng 5 2019

Bài 42 , Có \(m=\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\)

    \(\Rightarrow m^3=4+\sqrt{80}-\sqrt{80}+4-3m\sqrt[3]{\left(4+\sqrt{80}\right)\left(\sqrt{80-4}\right)}\)

    \(\Leftrightarrow m^3=8-3m\sqrt[3]{80-16}\)

    \(\Leftrightarrow m^3=8-3m\sqrt[3]{64}\)

    \(\Leftrightarrow m^3=8-12m\)

    \(\Leftrightarrow m^3+12m-8=0\)

Vì vậy m là nghiệm của pt \(x^3+12x-8=0\)

Bài 44, c, \(D=\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)

\(\Rightarrow D^3=2+10\sqrt{\frac{1}{27}}+2-10\sqrt{\frac{1}{27}}+3D\sqrt[3]{\left(2+10\sqrt{\frac{1}{27}}\right)\left(2-10\sqrt{\frac{1}{27}}\right)}\)

\(\Leftrightarrow D^3=4+3D\sqrt[3]{4-\frac{100}{27}}\)

\(\Leftrightarrow D^3=4+3D\sqrt[3]{\frac{8}{27}}\)

\(\Leftrightarrow D^3=4+2D\)

\(\Leftrightarrow D^3-2D-4=0\)

\(\Leftrightarrow D^3-4D+2D-4=0\)

\(\Leftrightarrow D\left(D^2-4\right)+2\left(D-2\right)=0\)

\(\Leftrightarrow D\left(D-2\right)\left(D+2\right)+2\left(D-2\right)=0\)

\(\Leftrightarrow\left(D-2\right)\left[D\left(D+2\right)+2\right]=0\)

\(\Leftrightarrow\left(D-2\right)\left(D^2+2D+2\right)=0\)

\(\Leftrightarrow\left(D-2\right)\left[\left(D+1\right)^2+1\right]=0\)

Vì [....] > 0 nên D - 2 = 0 <=> D = 2 

Ý d làm tương tự nhá

chi ơi đề đây nhé , các bạn giải được thì giải không được thì thôi, mình chỉ viết đề cho bạn mình thôi mong các bạn thông cảm nhébài 1)cho \(x,y\in Q\) thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+2xy\right)\) chứng minh rằng \(\sqrt{1-\frac{1}{xy}}\) là số hữ tỉbài 2 )cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1. chứng minh rằng \(B=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\in Q\)chú ý...
Đọc tiếp

chi ơi đề đây nhé , các bạn giải được thì giải không được thì thôi, mình chỉ viết đề cho bạn mình thôi mong các bạn thông cảm nhé

bài 1)

cho \(x,y\in Q\) thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+2xy\right)\) chứng minh rằng \(\sqrt{1-\frac{1}{xy}}\) là số hữ tỉ

bài 2 )

cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1. chứng minh rằng \(B=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\in Q\)

chú ý chị chi em viết cho chị mà chị phải trả công em chứ còn thùy linh là khác 

bài 3) 

cho a,b,c là các số hữ tỉ thỏa mãn ab+bc+ca=1. tính \(C=a.\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+...\) (n0s theo quy luật chi nhé tớ biết đầu cậu thông minh nên tớ viết thế thôi)

bài 4) 

cho a,b,c >0 thỏa mãn abc=1. tính \(A=\frac{\sqrt{a}}{1+\sqrt{a}+\sqrt{ab}}+...\) (cái này cũng theo quy luật)

bài 5) 

giải các phương trình vô tỉ sau 

1,2 không phải làm nên không chép nữa

3)   \(\sqrt{x^2-10x+25}-3x=1\) 

4)    \(x-\frac{1}{2}\sqrt{x^2-8x+16}=2\)

5)   \(\sqrt{x^2-16}+\sqrt{x^2-5x+4}=0\)

6) chú ý đây viết mỏi tay luôn nhớ mai đãi bánh mì với kem đấy 

8
5 tháng 9 2017

lần sau đăng từng câu hỏi lên thôi còn như thế này ms nhìn đã mỏi mắt ns đến j lm

5 tháng 9 2017

đây mà gọi là toán lớp 1 à

1 tháng 11 2018

Đặt: 

\(P=\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\)

Ta c/m:

\(a^3+1\ge a^2+a\Leftrightarrow a^3-a^2-\left(a-1\right)\Leftrightarrow\left(a-1\right)^2\left(a+1\right)\ge0\Rightarrow DPCM\)

\(\Rightarrow P\le\frac{a}{a^2+2a}+\frac{b}{b^2+2b}+\frac{c}{c^2+2c}=\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

Áp dụng bđt Sac- xơ ngược ta được:

\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\le\frac{1}{9}\left(\frac{4}{2}+\frac{1}{a}\right)+\frac{1}{9}\left(\frac{4}{2}+\frac{1}{b}\right)+\frac{1}{9}\left(\frac{1}{c}+\frac{4}{2}\right)\)

\(=\frac{2}{3}+\frac{ab+bc+ca}{9}\)

Ta cần c/m: \(\frac{2}{3}+\frac{ab+bc+ca}{9}\le1\Leftrightarrow\frac{ab+bc+ca}{9}\le\frac{1}{3}\Leftrightarrow ab+bc+ca\ge3\)

1 tháng 11 2018

Tiếp nhé:

Áp dụng bđt AM-GM ta được:

\(ab+bc+ca\ge3\sqrt[3]{ab.bc.ca}=3\)  (do abc=1)

Dấu bằng xảy ra khi a=b=c=1

=>DPCM

Bài này anh nhờ 1 người bạn trên fb giúp

30 tháng 7 2016

b, 3x^3+3x^2+3x+1=0<=>2x^3+(x+1)^3=0<=> .
Hằng đẳng thức đi bác 

26 tháng 2 2022

đây đích thực có phải lớp 1 ko bn?