Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c+d=100\\a-b+c-d=-50\\8a+4b+2c+d=120\\27a+9b+3c+d=P\left(3\right)\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\\\left(4\right)\end{matrix}\)
(1)+(2) \(\Leftrightarrow2\left(a+c\right)=50\Rightarrow c=25-a\)
(1)-(2) \(\Leftrightarrow2\left(b+d\right)=150\Rightarrow b=75-d\)
thế vào (3)<=> \(8a+4\left(75-d\right)+2\left(25-a\right)+d=120\)
\(\Leftrightarrow6a-3d=230\Rightarrow d=2a+\dfrac{230}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=25-a\\b=-2a-\dfrac{5}{3}\\d=2a+\dfrac{230}{3}\end{matrix}\right.\)
\(P\left(3\right)=27a-9\left(2a+\dfrac{5}{3}\right)+3\left(25-a\right)+2a+\dfrac{230}{3}\)
\(\left\{{}\begin{matrix}\forall a\in R;a\ne0\\P\left(3\right)=8a+\dfrac{410}{3}\end{matrix}\right.\)
a) d = -9b nên P(3) = 27a + 9b + 3c + d = 27a + 3c ; P(-3) = -27a + 9b - 3c + d = -27a - 3c
=> P(3).P(-3) = (27a + 3c)(-27a - 3c) = -(27a + 3c)2\(\le0\)
b) Để\(A\in Z\)thì\(n+1⋮n^2+2\)nên bội của n + 1 là (n + 1)(n - 1) chia hết cho n2 + 2
\(\Rightarrow n^2+2-3⋮n^2+2\Rightarrow3⋮n^2+2\)mà\(n^2+2\ge2\)=> n2 + 2 = 3 => n2 = 1 => n = -1 ; 1.Thử lại :
n | -1 | 1 |
n + 1 | 0 | 2 |
n2 + 2 | 3 | 3 |
A | 0 (chọn) | \(\frac{2}{3}\)(loại) |
Vậy n = -1
\(P\left(1\right)=a+b+c+d=100 \)
\(P\left(-1\right)=-a+b-c+d=50\)
\(P\left(0\right)=a\cdot0+b\cdot0+c\cdot0+d=d=1\)
\(P\left(2\right)=8a+4b+2c+d=120\)
Với d=1, ta có \(a+b+c=99\)(#)
\(-a+b-c=49\)(##)
\(8a+4b+2c=119\)(###)
Lấy (#) cộng (##) vế theo vế, ta có \(2b=148\Leftrightarrow b=74\)
Với d = 1 ; b = 74 , ta có \(a+c=25\)(@)
\(8a+2c=-177\)(@@)
Nhân 2 vào hai vế của (@), ta có \(2a+2c=50\)(@@@)
Lấy (@@) trừ (@@@) vế theo vế, ta có \(6a=-227\Rightarrow a=\frac{-227}{6}\)\(\Rightarrow c=25-\left(\frac{-227}{6}\right)=\frac{377}{6}\)
Từ đó, \(P\left(x\right)=\frac{-227}{6}x^3+74x^2+\frac{377}{6}x+1\Rightarrow P\left(3\right)=-\frac{227}{6}\cdot27+74.9+\frac{377}{6}\cdot3+1=-166\)
ĐỀ bài em sai nhé
Cho \(f\left(x\right)=ax^{2^{ }}+bx+c\)
suy ra \(f\left(x_0\right)=0\Rightarrow f\left(x_0\right)=ax_0^{2^{ }}+bx_0+c=0\)
\(g\left(x\right)=cx^{2^{ }}+bx+a\Rightarrow g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a\)
\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x_0^2}+\frac{b}{x_0}+a=\frac{c+bx_0+ax^2_0}{x_0^2}=\frac{f\left(x_0\right)}{x_0^2}=0\) (với x0 khác 0)
Lời giải:
Ta có thể viết dạng của $f(x)$ như sau:
\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)
Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$
Giả sử \(g(x)=mx^3+nx^2+px\)
\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)
Giải hệ trên thu được \(m=0,n=0,p=10\)
Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)
Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)
\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)
Câu hỏi của Đặng Tuấn - Toán lớp 8 - Học toán với OnlineMath tương tự
Xl nha ! mk ghi thiếu đề !
đề tính P(3) nhé ~~
Toán lớp 7 nhé !