Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ dãy trên ta có:
(\(\frac{3}{2}\)+\(\frac{1}{2}\))+(\(\frac{8}{3}\)+\(\frac{2}{3}\))+......+(\(\frac{2600}{51}\)+\(\frac{1}{51}\)) < vì không có cách nhập hỗn số nên mình đổi ra phân số >
= 2 + 3 + 4 + 5 + 6 + ..........................+ 51
Từ 2 -> 51 có :( 51 - 2 ) : 1 + 1 = 50 số
Chia ra : 50 : 2 = 25 cặp
ta có( 51 + 2 ) x 25 =1325
Vậy tổng trên có kết quả bằng 1325 (tớ chỉ nghĩ thế thôi chứ sai đừng trách nhá.Đùa thôi,đúng đấy )
Phần C đề thiếu
\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)
\(\Rightarrow4D=3-\frac{203}{3^{100}}\)
\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)
\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)
\(=\frac{7}{2}-2\)
\(=\frac{7}{2}-\frac{4}{2}\)
\(=\frac{3}{2}\)
\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)
\(=\frac{3}{7}.\left(2-9\right)\)
\(=\frac{3}{7}.\left(-7\right)\)
\(=-3\)
\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )
1
a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)
= \(3\cdot25:\frac{5}{4}\)
= \(3\cdot\left(25:\frac{5}{4}\right)\)
=\(3\cdot20\)
=60
b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)
=\(\frac{3}{7}\cdot\left(-7\right)\)
=\(-3\)
c) =
Mk sửa lại đề xíu, có lẽ bn chép sai ở phân số cuối của D phải là 1/101
C = 1002+12/100.1 + 992+22/99.2 + ... + 512+502/51.50
C = 1002/100.1 + 12/100.1 + 992/99.2 + 22/99.2 + ... + 512/51.50 + 502/51.50
C = 100/1 + 1/100 + 99/2 + 2/99 + ... + 51/50 + 50/51
C = 100/1 + 99/2 + 98/3 + ... + 51/50 + 50/51 + ... + 1/100
C = (1 + 1 + ... + 1) + 99/2 + 98/3 + ... + 1/100
100 số 1
C = (99/2 + 1) + (98/3 + 1) + ... + (1/100 + 1) + 1
C = 101/2 + 101/3 + ... + 101/100 + 101/101
C = 101.(1/2 + 1/3 + ... + 1/100 + 1/101)
=> C : D = 101
Mk sửa lại đề xíu, có lẽ bn chép sai ở phân số cuối của D phải là 1/101
C = 1002+12/100.1 + 992+22/99.2 + ... + 512+502/51.50
C = 1002/100.1 + 12/100.1 + 992/99.2 + 22/99.2 + ... + 512/51.50 + 502/51.50
C = 100/1 + 1/100 + 99/2 + 2/99 + ... + 51/50 + 50/51
C = 100/1 + 99/2 + 98/3 + ... + 51/50 + 50/51 + ... + 1/100
C = (1 + 1 + ... + 1) + 99/2 + 98/3 + ... + 1/100
100 số 1
C = (99/2 + 1) + (98/3 + 1) + ... + (1/100 + 1) + 1
C = 101/2 + 101/3 + ... + 101/100 + 101/101
C = 101.(1/2 + 1/3 + ... + 1/100 + 1/101)
=> C : D = 101