\(x^2-2x-m=3\)

Tìm m để phương trình vô nghiệm

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

câu 2 là lịch sử là dài nhất , câu 3 :chuột điếc là chuột hư tai hư tai là hai tư ,

25 tháng 5 2020

\(\Delta=\left(m+3\right)^2-4\left(m+2\right)=m^2+2m+1=\left(m+1\right)^2\ge0,\forall m\)

=> Phương trình có hai nghiệm: 

\(\orbr{\begin{cases}x_1=\frac{m+3-\left(m+1\right)}{2}=1\\x_2=\frac{m+3+m+1}{2}=m+2\end{cases}}\)

+) TH1: \(x_1=2x_2\) khi đó: \(1=2m+4\Leftrightarrow m=-\frac{3}{2}\)

+) TH2: \(x_2=2x_1\)khi đó: m + 2 = 2 <=> m = 0 

Vậy m = -3/2 hoặc m = 0.

25 tháng 5 2020

cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn

chỉ cần hình thui

27 tháng 5 2020

\(x^2-\left(m+3\right)x+m+2=0\)

Xét \(\Delta=\left(m+3\right)^2-4\left(m+2\right)=m^2+6m+9-4m-8=\left(m-1\right)^2\ge0\)

Vậy phương trình luôn có nghiệm với mọi m

Gọi 2 nghiệm của phương trình lần lượt là x1;x2

Theo Viete ta dễ dàng có ngay:

\(x_1+x_2=m+3;x_1x_2=m+2\)

Không mất tính tổng quát giả sử rằng \(x_1=2x_2\)

Khi đó \(2x_2+x_2=m+3\Rightarrow x_2=\frac{m+3}{3};2x_2\cdot x_2=m+2\)

\(2x_2^2=m+2\Leftrightarrow2\left(\frac{m+3}{3}\right)^2=m+2\)

Giải được phương trình này là ra giá trị của m nhé !

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữbài 2: 1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đób) tìm a để hệ phương...
Đọc tiếp

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ

bài 2: 

1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó

b) tìm a để hệ phương trình vô nghiệm

2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a

b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1

c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên

bài 3:

1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)

2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm

 

 

0