K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2023

Giả sử ta định m sao cho pt \(x^2-mx+m-1=0\left(1\right)\) luôn có nghiệm.

Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(C=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(\Rightarrow C\left(m^2+2\right)=2m+1\Rightarrow Cm^2-2m+\left(2C+1\right)=0\left(2\right)\)

Coi phương trình (2) là phương trình ẩn m tham số C, ta có:

\(\Delta'=1^2-C.\left(2C+1\right)=-2C^2-C+1\)

Để phương trình (2) có nghiệm thì:

\(\Delta'\ge0\Rightarrow-2C^2-C+1\ge0\)

\(\Leftrightarrow\left(2C-1\right)\left(C+1\right)\le0\)

\(\Leftrightarrow-1\le C\le\dfrac{1}{2}\)

Vậy \(MinC=-1;MaxC=\dfrac{1}{2}\)

11 tháng 2 2023

Cảm ơn bạn nhiều

24 tháng 4 2020

Có: \(\Delta=\left(m-2\right)^2\ge0\) => pt đã cho có nghiệm 

Vi-et: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)

\(C=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}\)

đến đây xét delta ra min max..

26 tháng 4 2020

Ta có \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)

=> PT luôn có 2 nghiệm x1;x2 với mọi m

Khi đó theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)

Khi đó: \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}\)

\(B=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2+2}\)

\(B=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+3}=\frac{2\left(m-1\right)3}{m^2+2}=\frac{2m+1}{m^2+2}\)

=> 2B+1=\(2\cdot\frac{2m+1}{m^2+2}+1=\frac{4m+2+m^2+2}{m^2+2}=\frac{m^2+4m+4}{m^2+2}=\frac{\left(m+2\right)^2}{m^2+2}\)

Ta có (m+2)2 >=0; m2+2>0 

<=> 2B+1 >=0 <=> \(B\ge\frac{-1}{2}\)

Dấu "=" xảy ra <=> m=-2

Vậy MinB=\(\frac{-1}{2}\)đạt được khi m=-2

NV
14 tháng 4 2022

1.

\(a+b+c=0\) nên pt luôn có 2 nghiệm

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)

Dấu "=" xảy ra khi \(m=1\)

2.

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)

\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)

15 tháng 4 2022

undefined

10 tháng 5 2018

mọi ng khỏi cần giải nữa nha mk bk lm r

19 tháng 3 2020

\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2\ge0\forall m\)

=> phương trình  luôn có nghiêm zới \(\forall m\)

ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}=>x^2_1+x^2_2}=m^2-2m+2\)

ta có \(A=\frac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}=\frac{2m+1}{m^2+2}\)

=> \(A-1=\frac{-\left(m-1\right)^2}{m^2+2}\le0\forall m\)

=>\(A\le1\)

dấu = xảy ra khi zà chỉ khi m=1

30 tháng 4 2020

Áp dụng hệ thức Vi-et, ta có :

\(\hept{\begin{cases}x_1x_2=m-1\\x_1+x_2=m\end{cases}}\)

Thay vào biểu thức, ta được :

\(A=\frac{2\left(m-1\right)+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}=\frac{-\frac{1}{2}\left(m^2+2\right)+\frac{m^2}{2}+2m+2}{m^2+2}\)

\(=-\frac{1}{2}+\frac{\frac{\left(m+2\right)^2}{2}}{m^2+2}\ge\frac{-1}{2}\)

Vậy GTNN của A là \(\frac{-1}{2}\)khi m = -2

Trả lời 

a) Delta phương trình đó rồi xét 2 trường hợp

b) phần à delta lên sẽ tìm được m rồi thế vào là xong

Chắc vậy không chắc cho nắm

1 tháng 5 2019

a) ĐK:\(m^2-4m+4\ge0\left(LĐ\right)\)

Theo hệ thức Viet:\(x_1+x_2=m;x_1x_2=m-1\)

\(R=\frac{2m-2+3}{m^2-2m+2+2\left(1+m-1\right)}\)

\(=\frac{2m+1}{m^2+2}\)

\(\Rightarrow Rm^2+2R-2m-1=0\)

Để pt có ng0:\(1-R\left(2R-1\right)\ge0\)

\(\Leftrightarrow-2R^2+R+1\ge0\)

\(\Leftrightarrow\frac{-1}{2}\le R\le1\)

\(R_{max}=1\)

b) Trừ đi rồi tìm m.