K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

trời đất
ai tl hộ mình vs

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)

a: Để phương trình có hai nghiệm trái dấu thì \(\left(m^2-m-6\right)\cdot1< 0\)

\(\Leftrightarrow\left(m-3\right)\left(m+2\right)< 0\)

\(\Leftrightarrow-2< m< 3\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

 

30 tháng 6 2020

a

Ta có:

\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)

Nên phương trình luôn có 2 nghiệm phân biệt với mọi m

b

Phương trình có 2 nghiệm trái dấu thì \(2m-3< 0\Leftrightarrow m< \frac{3}{2}\)

Vậy .....................

15 tháng 6 2016

a)(m-1)x2+2(m-1)x-m

pt bậc 2 có dạng ax2+bx+c=0.

a=(m-1);b=(m-1);c=-m

áp dụng b2-4ac.ta có:Denta=(m-1)2-4[(-m)*(m-1)]

Để pt có nghịm kép =>Denta=0

=>(m-1)2-4[(-m)*(m-1)]=0

=>m=1 hoặc m=0

Thay với m=1 vào và m=0 vào tự tính

b)Để pt có 2 nghiệm phân biệt thì Denta>0

=>(m-1)2-4[(-m)*(m-1)]>0

=>5m2-6m+1>0 

Giải BPT này ra

15 tháng 6 2016

à mk thêm 1 bước nữa để bạn giải cho nhẹ

5m2-6m+1>0

<=>(m-1)(5m-1)>0 tới đây học sinh lớp 6 cx có thể giải đc nhé chúc bạn học tốt