Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
- Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
- từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
a) Phương trình có \(\Delta'=m^2-4m+8=\left(m-2\right)^2+4>0\forall m\)nên phương trình có 2 nghiệm phân biệt với mọi m
b) Do đó, theo Viet với mọi m ta có: \(S=-\frac{b}{a}=2m;P=\frac{c}{a}=m-2\)
\(M=\frac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{-24}{4m^2-8m+16}=\frac{-6}{m^2-2m+4}\)
\(=\frac{-6}{\left(m-1\right)^2+3}\)
Khi m=1 ta có (m-1)2+3 nhỏ nhất
=> \(-M=\frac{6}{\left(m-1\right)^2+3}\)lớn nhất khi m=1
=> \(M=\frac{-6}{\left(m-1\right)^2+3}\)nhỏ nhất khi m=1
Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0
a, Ta có : \(a=1;b=-2m;c=m+2\)
a, Để phương trình có 2 nghiệm ko âm nên : \(\hept{\begin{cases}\Delta\ge0\\S>0\\P>0\end{cases}}\)
hay \(\Delta=\left(-2m\right)^2-4\left(m+2\right)=4m^2-4m-8=\left(2m+1\right)^2-9\)
mà \(\Delta\ge0\Rightarrow\left(2m-1\right)^2-9\ge0\Rightarrow m\ge2\)
\(S>0\)mà \(S=x_1+x_2=-\frac{b}{a}\Rightarrow S=-\frac{b}{a}=2m\Rightarrow2m>0\Rightarrow m>0\)
\(P>0\)mà \(P=x_1x_2=\frac{c}{a}\Rightarrow P=\frac{c}{a}=m+2\Rightarrow m+2>0\Rightarrow m>-2\)
\(\Rightarrow\hept{\begin{cases}\Delta\ge0\\S>0\\P>0\end{cases}}\Rightarrow m\ge2\)Vậy ta có đpcm
b, Theo hệ thức Vi et : \(\hept{\begin{cases}S=-\frac{b}{a}\\P=\frac{c}{a}\end{cases}\Rightarrow\hept{\begin{cases}S=2m\\P=m+2\end{cases}}}\)
Theo bài ra ta có : \(E=\sqrt{x_1}+\sqrt{x_2}\Rightarrow E^2=\left(\sqrt{x_1}+\sqrt{x_2}\right)^2\)
\(=x_1+2\sqrt{x_1x_2}+x_2=\left(x_1+x_2\right)+2\sqrt{x_1x_2}\)
\(\Rightarrow2m+2\sqrt{m+2}=2m+\sqrt{4m+8}\)
\(\Rightarrow E=\sqrt{2m+\sqrt{4m+8}}\)