Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta giải như sau em nhé :)
Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow5^2-4\left(m-3\right)>0\Leftrightarrow37-4m>0\Leftrightarrow m< \frac{37}{4}\)
Khi đó theo Viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=m-3\end{cases}}\)
Xét hệ \(\hept{\begin{cases}x_1+x_2=5\\x^2_1-2x_1x_2+3x_2=1\end{cases}}\) tìm được 2 nghiệm \(\hept{\begin{cases}x_1=4\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=\frac{8}{3}\\x_2=\frac{7}{3}\end{cases}}\)
TH1: Ta có: \(4=m-3\Rightarrow m=7\left(tm\right)\)
TH2: Ta có : \(\frac{56}{9}=m-3\Rightarrow m=\frac{83}{9}\left(tm\right)\)
Vậy có 2 giá trị m.
Chúc em học tốt :))
1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho
b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\); \(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)
=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m
2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb
áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\); \(x1.x2=-1\)
câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha
sửa đề rồi liên hệ để mình làm tiếp nha
Xét (delta)=(2m+1)^2-2m
=4m^2+4m+1-2m
=4m^2+2m+1(luôn lớn hôn hoặc bằng 0)
Suy ra phương trình đã cho luôn có nghiệm
Theo hệ thức Vi-ét có x1+x2=2(2m+1)
x1.x2=2m
Theo bài ra có x1^2+x2^2=(2căn3)^2
(x1^2+x2^2)^2-2x1.x2=12
4(2m+1)^2-4m=12
16m^2+12m+4=12
16m^2+12m-8=0
Suy ra m=\(\frac{-3+\sqrt{41}}{8}\)hoặc m=\(\frac{-3-\sqrt{41}}{8}\)
a) để pt có nghiệm <=> đen ta phẩy >= 0
<=> (-(m-1))2 - 1(-3m+m2) >= 0
<=> (m-1)2 +3m-m2 >= 0
<=> m2-2m+1+3m-m2 >= 0
<=> m+1 >= 0
<=> m >= -1
vậy khi m >= -1 thì pt có nghiệm
b) khi m >= -1 thì pt có nghiệm ( theo a)
theo vi-ét ta có: x1+x2 = 2(m-1) (1)
x1.x2 = -3m + m2 (2)
theo đầu bài ta có: x12 + x22=16
<=> x12+ 2x1x2+ x22 -2x1x2= 16
<=> (x1+x2)2 -2x1x2 = 16 (3)
thay (1) và (2) và (3) rồi tính m.
kết quả: khi m=3 thì pt có nghiệm thỏa mãn đk đó.
a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)
\(=9-m\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
\(\Rightarrow 9-m>0\)
\(\Leftrightarrow m<9\)
Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt
b)Theo định lí Vi-ét ta có:
\(x_1.x_2=\frac{-m}{1}=-m(1)\)
\(x_1+x_2=\frac{-6}{1}=-6\)
Lại có \(x_1=2x_2\)
\(\Rightarrow3x_2=-6\)
\(\Leftrightarrow x_2=-2\)
\(\Rightarrow x_1=-4\)
Thay x1;x2 vào (1) ta được
\(8=m\)
Vậy m-8 thì x1=2x2
Ở trên có đoạn mình đánh lộn \(\Delta'\) ra \(\Delta\) nhé
Bài 1:
Để pt có hai nghiệm phân biệt thì \(\Delta=m^2-4(m-2)>0\Leftrightarrow m^2-4m+8>0\)
\(\Leftrightarrow (m-2)^2+4>0\) (luôn đúng với mọi \(m\in\mathbb{R}\) )
Khi đó áp dụng hệ thức Viete ta có: \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=m-2\end{matrix}\right.\)
a)
Từ đây ta có:
\(x_1^2+x_2^2=7\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2=7\)
\(\Leftrightarrow m^2-2(m-2)=7\)
\(\Leftrightarrow m^2-2m-3=0\)
\(\Leftrightarrow (m+1)(m-3)=0\Leftrightarrow \left[\begin{matrix} m=-1\\ m=3\end{matrix}\right.\) ((đều thỏa mãn)
b)
\(x_1^3+x_2^3=18\)
\(\Leftrightarrow (x_1+x_2)^3-3x_1x_2(x_1+x_2)=18\)
\(\Leftrightarrow m^3-3m(m-2)=18\)
\(\Leftrightarrow m^2(m-3)+6(m-3)=0\)
\(\Leftrightarrow (m-3)(m^2+6)=0\Leftrightarrow \left[\begin{matrix} m-3=0\\ m^2+6=0(\text{vô lý})\end{matrix}\right.\)
\(\Rightarrow m=3\)
Bài 2:
PT có hai nghiệm phân biệt \(\Leftrightarrow \Delta'=m^2-(m^2-4)>0\Leftrightarrow 4>0\) (luôn đúng với mọi $m$)
Khi đó áp dụng hệ thức Viete ta có: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-4\end{matrix}\right.(*)\)
a) Ta có:
\(x_2=2x_1\Rightarrow \left\{\begin{matrix} x_1+2x_1=2m\\ 2x_1^2=m^2-4\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 3x_1=2m\\ 2x_1^2=m^2-4\end{matrix}\right.\)
\(\Rightarrow \left(\frac{2m}{3}\right)^2=\frac{m^2-4}{2}\Leftrightarrow 8m^2=9m^2-36\)
\(\Leftrightarrow m^2=36\Rightarrow m=\pm 6\)
b)
\(3x_1+2x_2=7\)
\((*)\Leftrightarrow \left\{\begin{matrix} 2x_1+2x_2=4m\\ x_1.2x_2=2(m^2-4)\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 2x_1+7-3x_1=4m\\ x_1(7-3x_1)=2m^2-8\end{matrix}\right.\)
Thay \(x_1=7-4m\) ta có : \(7x_1-3x_1^2=2m^2-8\)
\(\Leftrightarrow 7(7-4m)-3(7-4m)^2=2m^2-8\)
\(\Leftrightarrow 2m^2-8+3(7-4m)^2-7(7-4m)=0\)
\(\Leftrightarrow 50m^2-140m+90=0\)
\(\Leftrightarrow 10(m-1)(5m-9)=0\)
\(\Leftrightarrow \left[\begin{matrix} m=1\\ m=\frac{9}{5}\end{matrix}\right.\)