K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: x1=3x2 và x1+x2=2m-2

=>3x2+x2=2m-2 và x1=3x2

=>x2=0,5m-0,5 và x1=1,5m-1,5

x1*x2=-2m

=>-2m=(0,5m-0,5)(1,5m-1,5)

=>-2m=0,75(m^2-2m+1)

=>0,75m^2-1,5m+0,75+2m=0

=>\(m\in\varnothing\)

c: x1/x2=3

x1+x2=2m-2

=>x1=3x2 và x1+x2=2m-2

Cái này tương tự câu b nên kết quả vẫn là ko có m thỏa mãn

31 tháng 1 2023

plz god help me ;-;

31 tháng 1 2023

\(x^2-2\left(m+1\right)x+4m=0\)

\(\text{∆}=4\left(m+1\right)^2-16m=4\left(m-1\right)^2\)

để phương trình có 2 nghiệm phân biệt:

\(\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2\left(m+1\right)+2\left(m-1\right)}{2}=2m\\x_2=\dfrac{2\left(m+1\right)-2\left(m-1\right)}{2}=2\end{matrix}\right.\)

Ta có:

 \(x_1=-3x_2\)

\(\Rightarrow2m=-6\Rightarrow m=-3\left(TM\right)\)

Vậy ...

6 tháng 5 2022

Cho phương trình x2 + 2 ( m + 3 )x + 2m - 11

a) Ta có:

△' = b'- ac = ( m + 3 )2 - 1 . ( 2m - 11 ) 

m2 - 6m + 9 - 2m + 11

△' = b'- ac = 

3 tháng 5 2022

Để  phương trình 1 có 2 nghiệm phân biệt

=> \(\Delta,>0\)  <=> \(\left[-\left(m-1\right)\right]^2-\left(-2m+5\right)>0\)

<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

=> Theo hệ thức Vi ét ta có 

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\circledast\\x_1.x_2=-2m+5\circledast\circledast\end{matrix}\right.\)   

Theo bài ra ta có 

\(x_1-x_2=-2\circledcirc\)

Từ \(\circledast vaf\circledcirc\) ta có hệ pt 

\(\left\{{}\begin{matrix}x1+x2=2m-2\\x1-x2=-2\end{matrix}\right.\)  <=>\(\left\{{}\begin{matrix}x1=m-2\\x2=m\end{matrix}\right.\)

Thay x1 và x2 vào \(\circledast\circledast\)ta dc

\(\left(m-2\right)m=-2m+5\)

<=> m=\(\left[{}\begin{matrix}-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\left(tm\right)\)

Vậy ...

 

30 tháng 4 2020

Phương trình có hai nghiệm fan biệt <=> \(\Delta>0\)

<=> \(\left(m-1\right)^2+4m>0\Leftrightarrow\left(m+1\right)^2>0\)

<=> \(m\ne-1\)

Áp dụng viet ta có: \(x_1x_2=-m;x_1+x_2=m-1\)

Khi đó; 

\(x_1\left(3-x_2\right)+20\ge3\left(3-x_2\right)\)

<=> \(3\left(x_1+x_2\right)-x_1x_2+11\ge0\)

=>\(3\left(m-1\right)+m+11\ge0\)

<=> \(m\ge-2\) 

30 tháng 4 2020

Ta có: \(\Delta=\left(m-1\right)^2+4m=\left(m+1\right)^2\)

Phương trình có 2 nghiệm phân biệt x1;x2 khi \(\Delta\)>0 <=> m\(\ne\)-1

Ta có: \(\hept{\begin{cases}x_1+x_2=m+1\\x_1\cdot x_2=-m\end{cases}}\)

Theo bài ra ta có:

\(x_1\left(3-x_2\right)+20\ge3\left(3-x_2\right)-x_1x_2\ge-11\)

\(\Leftrightarrow3\left(m-1\right)+m\ge-11\)

<=> \(4m\ge-8\Leftrightarrow m\ge-2\)

Vậy \(m\ge-2;m>-1\)thì phương trình có 2 nghiệm phân biệt thỏa mãn yêu cầu đề bài