K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 5 2020

a/ Bạn tự giải

b/ \(\Delta'=m^2+1>0;\forall m\)

Để biểu thức đề bài xác định \(\Leftrightarrow\) pt có 2 nghiệm không âm

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)>0\\x_1x_2=2m\ge0\end{matrix}\right.\) \(\Rightarrow m\ge0\)

\(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=2\)

\(\Leftrightarrow2\left(m+1\right)+2\sqrt{2m}=2\)

\(\Leftrightarrow\sqrt{2m}=-m\)

Vế trái không âm, vế phải không dương, dấu "=" xảy ra khi và chỉ khi \(m=0\)

13 tháng 7 2021

Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4\left(4m-4\right)=m^2+6m+9-16m+16=\left(m-5\right)^2\ge0\)

=> pt luôn có 2 nghiệm x1, x2

=> \(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{m+3-m+5}{2}=4\)

  \(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{m+3+m-5}{2}=m-1\)

Theo bài ra, ta có: \(\sqrt{x_1}+\sqrt{x_2}+x_1x_2=20\)

ĐK: \(x_1\ge0\)\(x_2\ge0\) <=> 4  \(\ge\) 0 và m - 1 \(\ge\)0 <=> m \(\ge\)1

<=> \(\sqrt{4}+\sqrt{m-1}+4\left(m-1\right)=20\)

<=> \(\sqrt{m-1}=22-4m\left(m\le\frac{11}{2}\right)\)

<=> \(m-1=16m^2-176m+484\)

<=> \(16m^2-177m+485=0\)

<=> \(16m^2-80m-97m+485=0\)

<=> \(\left(m-5\right)\left(16m-97\right)=0\)

<=> \(\orbr{\begin{cases}m=5\left(tm\right)\\m=\frac{97}{16}\left(ktm\right)\end{cases}}\)

Vậy ...

6 tháng 1 2023

Ptr có: `a+b+c=1-2m+2+2m-3=0`

   `=>[(x=1),(x=c/a=2m-3):}`

`@TH1: x_1=1;x_2=2m-3`

  `=>\sqrt{1}=2\sqrt{2m-3}`

`<=>\sqrt{2m-3}=1/2`

`<=>2m-3=1/4`

`<=>m=13/8`

`@TH2:x_1=2m-3;x_2=1`

  `=>\sqrt{2m-3}=2\sqrt{1}`

`<=>2m-3=4`

`<=>m=7/2`

11 tháng 2 2022

\(x^2-\left(m+1\right)x+m+4=0\left(1\right)\)

\(\Rightarrow\Delta>0\Leftrightarrow\left(m+1\right)^2-4\left(m+4\right)>0\Leftrightarrow\left[{}\begin{matrix}m< -3\\m>5\end{matrix}\right.\)\(\left(2\right)\)

\(ddkt-thỏa:\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)

\(x1=0\Rightarrow\left(1\right)\Leftrightarrow m=-4\Rightarrow\left(1\right)\Leftrightarrow x^2+3x=0\Leftrightarrow\left[{}\begin{matrix}x1=0\\x2=-3< 0\left(loại\right)\end{matrix}\right.\)

\(x1\ne0\) \(\Rightarrow0< x1< x2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x1+x2>0\\x1x2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\m+4>0\end{matrix}\right.\)\(\Rightarrow m>-1\)\(\left(3\right)\)

\(\left(2\right)\left(3\right)\Rightarrow m>5\)

\(\Rightarrow\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)

\(\Leftrightarrow x1+x2+2\sqrt{x1x2}=12\Leftrightarrow m+1+2\sqrt{m+4}=12\)

\(\Leftrightarrow m+4+2\sqrt{m+4}-15=0\)

\(đặt:\sqrt{m+4}=t>5\Rightarrow t^2+2t-15=0\Leftrightarrow\left[{}\begin{matrix}t=-5\left(ktm\right)\\t=3\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow m\in\phi\)

11 tháng 2 2022

Để pt có 2 nghiệm pb 

\(\left(m+1\right)^2-4\left(m+4\right)=m^2+2m+1-4m-16\)

\(=m^2-2m-15>0\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m+4\end{matrix}\right.\)

Ta có : \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=12\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=12\)

Thay vào ta được \(m+1+2\sqrt{m+4}=12\Leftrightarrow2\sqrt{m+4}=11-m\)đk : m >= -4 

\(\Leftrightarrow4\left(m+4\right)=121-22m+m^2\Leftrightarrow m^2-26m+105=0\)

\(\Leftrightarrow m=21\left(ktm\right);m=5\left(ktm\right)\)

 

Ta có: \(\Delta=4m^2+4m-11\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow4m^2+4m-11>0\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=2m+5\end{matrix}\right.\)

Để phương trình có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+4m-11>0\\2m+3>0\\2m+5>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< \dfrac{-1-2\sqrt{3}}{2}\\m>\dfrac{-1+2\sqrt{3}}{2}\end{matrix}\right.\\m>-\dfrac{3}{2}\\m>-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{-1+2\sqrt{3}}{2}\)

 Mặt khác: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{x_1+x_2+2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{16}{9}\) \(\Rightarrow\dfrac{2m+3+2\sqrt{2m+5}}{2m+5}=\dfrac{16}{9}\)

\(\Rightarrow18m+27+18\sqrt{2m+5}=32m+80\)

\(\Leftrightarrow14m-53=18\sqrt{2m+5}\)

\(\Rightarrow\) ...

 

22 tháng 5 2021

giúp mình với ạ ! Mình cảm ơn ạ 

5 tháng 4 2021

a. Với m=6 thì phương trình (1) có dạng 

x^2 - 5x +4= 0

<=> (x-1)(x-4)=0

<=> x=1 hoặc x=4

Vậy m=6 thì phương trình có nghiệm x=1 hoặc x=4

5 tháng 4 2021

b. Xét \(\text{ Δ}=\left(-5\right)^2-4\cdot1\cdot\left(m-2\right)=33-4m\)

Để (1) có nghiệm phân biệt khi \(m< \dfrac{33}{4}\)

Theo Vi-et ta có: \(x_1x_2=m-2;x_1+x_2=5\)

Để 2 nghiệm phương trình (1) dương khi m>2

Ta có:

\(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\Leftrightarrow\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{2}{\sqrt{x_1x_2}}=\dfrac{9}{4}\\ \Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}+\dfrac{2}{\sqrt{x_1x_2}}=\dfrac{9}{4}\\ \Leftrightarrow\dfrac{5}{m-2}+\dfrac{2}{\sqrt{m-2}}=\dfrac{9}{4}\Leftrightarrow20+8\sqrt{m-2}=9\left(m-2\right)\\ \Leftrightarrow\left(\sqrt{m-2}-2\right)\left(9\sqrt{m-2}+10\right)=0\Leftrightarrow\sqrt{m-2}=2\Leftrightarrow m-2=4\Leftrightarrow m=6\left(t.m\right)\)