K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2020

Ta có ac = 1 . (-1) = -1 < 0 nên pt luôn có 2 nghiệm phân biệt.

Áp dụng hệ thức Viét: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=2\left(m-2\right)\\x_1x_2=\frac{c}{a}=-1\end{matrix}\right.\)

Do đó: \(\left|x_1-x_2\right|\le2\sqrt{5}\Leftrightarrow\left(x_1-x_2\right)^2\le20\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\le20\)

\(\Leftrightarrow4\left(m-2\right)^2+4\le20\)

\(\Leftrightarrow\left(m-2\right)^2\le4\)

Mà m nguyên nên (m - 2)2 là một số chính phương

\(\Rightarrow\left(m-2\right)^2\in\left\{0;1;4\right\}\Leftrightarrow m\in\left\{2;3;6;1;0\right\}\)

14 tháng 7 2020

Mặt khác m > 0 nên \(m\in\left\{1;2;3;6\right\}\)

14 tháng 1 2018

viet dc k bạn

2 tháng 4 2018

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

11 tháng 7 2015

\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)

\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)

A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)

\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.

\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)

(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)

\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}<0\text{ (loại) hoặc }\sqrt{k}\ge14+4\sqrt{17}\)

\(\Leftrightarrow k\ge\left(14+4\sqrt{17}\right)^2\approx929,78\Rightarrow k\ge930\)

Vậy  \(m=\frac{6+\sqrt{k}+\sqrt{k-28\sqrt{k}-76}}{8}\text{ hoặc }m=\frac{6+\sqrt{k}-\sqrt{k-28\sqrt{k}-76}}{8}\) với k là một số nguyên lớn hợn hoặc bằng 930.

 

a:Sửa đề: x^2-(m+1)x+2m-8=0

Khi m=2 thì (1) sẽ là x^2-3x-4=0

=>(x-4)(x+1)=0

=>x=4 hoặc x=-1

b: Δ=(-m-1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24>0

=>(1) luôn có hai nghiệm pb

\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2+4=11

=>m^2-2m=0

=>m=0 hoặc m=2

18 tháng 6 2015

bài 1: pt (2) hình như có vấn đề

b) \(x^4-7x^2+6=0\Leftrightarrow x^4-x^2-6x^2+6=0\Leftrightarrow\left(x^2-1\right)\left(x^2-6\right)=0\)

=> x^2-1=0 <=> x=+-1 hoặc x^2-6=0 <=> x=+-6 

bài 2: ĐK: x >0 và x khác 1

\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}-\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-2+2\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-1\right)\)

b)  ví x>0 => \(\sqrt{x}-1>-1\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)>-1\)=> k tìm đc Min

c) \(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}-1}\)

để biểu thức này nguyên => \(\sqrt{x}-1\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-1\in\left(+-1;+-2\right)\)

\(\sqrt{x}-1\)1-12-2
x4(t/m)0(k t/m)9(t/m)PTVN

 

=> x thuộc (4;9)

bìa 3: câu này bạn đăng riêng mình làm rồi đó