Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+1\right)^2-\left(4m^2-2m+3\right)=-2m^2+4m-2\)
\(=-2\left(m-1\right)^2\le0\) \(\forall m\)
\(\Rightarrow\) Không tồn tại m để pt có 2 nghiệm phân biệt
Đề bài có vấn đề
\(\frac{1-x_1}{1+x_2}+\frac{1-x_2}{1+x_1}=\frac{\left(1-x_1\right)\left(1+x_1\right)+\left(1-x_2\right)\left(1+x_2\right)}{\left(1+x_2\right)\left(1+x_1\right)}=\frac{1-x_1^2+1-x_2^2}{1+x_1+x_2+x_1x_2}\)
\(=\frac{2-\left(x_1+x_2\right)^2+2x_1x_2}{3+x_1x_2}=\frac{2x_1x_2-2}{x_1x_2+3}=\frac{4m^2+2}{2m^2-7}\)
Suy ra \(\left(2x_1x_2-2\right)\left(2m^2-7\right)=\left(x_1x_2+3\right)\left(4m^2+2\right)\)
\(\Leftrightarrow x_1x_2\left(4m^2-14\right)-4m^2+14=x_1x_2\left(4m^2+2\right)+12m^2+6\)
\(\Leftrightarrow x_1x_2=\frac{-16m^2+8}{16}=-m^2+\frac{1}{2}\)
Từ đây ta viết được phương trình bậc hai phải tìm theo Thalet đảo.
Chị gì gì ơi những bài toán khó như vậy chị nên đăng trên H.VN
Ở đó học sinh lớp 9,10,8,7 sẽ giúp cho
Ta có \(\Delta'=\left(m-1\right)^2-2m+5\ge0\)
=> \(m^2-4m+6\ge0\)luôn đúng
Theo vi-et ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{cases}}\)
Khi đó
\(P=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2\)
\(=\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right)^2-2\)
\(=\left(\frac{4\left(m-1\right)^2}{2m-5}-2\right)^2-2\)
\(=\left(\frac{4m^2-10m+2m-5+9}{2m-5}-2\right)^2-2\)
\(=\left(2m+1+\frac{9}{2m-5}-2\right)^2-2\)
\(=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
Để P là số nguyên
=> \(\frac{9}{2m-5}\)là số nguyên
=> \(2m-5\in\left\{\pm1;\pm3;\pm9\right\}\)
=> \(m\in\left\{-2;1;2;3;4;7\right\}\)
Kết hợp với ĐK
=> \(m\in\left\{1;2;3;4;7\right\}\)
Vậy \(m\in\left\{1;2;3;4;7\right\}\)
\(\Delta'=\left(2m+1\right)^2-\left(4m^2+4m\right)=1>0;\forall m\Rightarrow\) pt luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(2m+1\right)\\x_1x_2=4m^2+4m\end{matrix}\right.\)
\(\left|x_1-x_2\right|=x_1+x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2\ge0\\\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(2m+1\right)\ge0\\-2x_1x_2=2x_1x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\x_1x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\4m^2+4m=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=0\\mm=-1< -\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
\(\Delta'=\left(-m\right)^2-2m^2+1\)
=\(m^2-2m^2+1\)
=\(-m^2+1\) \(\Rightarrow-m^2+1>0\Leftrightarrow m< 1\)
theo vi-et ta có \(x_1+x_2=-2m\)
\(x_1.x_2=2m^2-1\)
theo đề bài ta có \(\left(x_1\right)^3+\left(x_2\right)^3-\left(x_1\right)^2-\left(x_2\right)^2=-2\)
\(\Leftrightarrow\)\(\left(x_1+x_2\right).\left(x_1^2-x_1.x_2+x_2^2\right)\) = 4
\(\Leftrightarrow\left(x_1+x_2\right).[\left(x_1+x_2\right)^2-3x_1.x_2]\) =4
\(\Leftrightarrow-2m.[\left(-2m\right)^2-3.\left(2m^2-1\right)]\)=4
\(\Leftrightarrow-2m.\left(4m^2-6m^2+3\right)\)=4
\(\Leftrightarrow-2m.\left(-2m^2-3\right)\) =4
\(\Leftrightarrow4m^2+6m\) =4
\(\Leftrightarrow4m^2+6m-4=0\)
\(\Delta=6^2-4.4.\left(-4\right)=36+64=100>0\) =>\(\sqrt{\Delta}=\sqrt{100}=50\)
phương trình có 2 ngiệm \(x_1=\frac{11}{2}\),\(x_2=-7\)
với \(x_2=-7\) thỏa mãn đk
bài này thì mk ko chắc đúng ko từ \(-2m.\left(-2m^2-3\right)\) trở lên là đúng
Thảo luận 1
đầu tiên cho denta > 0 để có 2 nghiệm đã ta thấy denta'=m^2+(m-1)^2 luôn luôn duơng nên có 2 no theo Viet ta có S= x1+x2=-b/a=2(m+1) P=x1.x2=c/a=4m-m^2 Theo GT A=/x1-x2/ min tuơng đuơng A^2=(x1-x2)^2 min=(x1+x2)^2-4x1.x2 ráp tổng tích vào, làm gọn ta có A^2= 2(m-1)^2+4m^2 mà 4m^2>=0, mim khi m=0, A^2=2 2(m-1)^2>=0, min khi m=1, A^2=4 Chọn A^2min=2, suy ra Amin= căn 2
Thảo luận 2
A=/x1-x2/ => A^2 = /x1-x2/^2 = (x1-x2)^2 => Amin khi (x1-x2)^2 min = (x1+x2)^2 - 4x1x2 min Ta co: x1 + x2 = 2(m+1) ; x1x2 = 4m-m^2. Thay vao: 4(2m^2 -2m+1) = 8 (m-1/2)^2 + 2 >= 2. A^2 >= 2 A = 0) hay A >= can2. Vậy Amin = can 2
\(a=1;b=-2\left(2m+1\right);c=4m^2+4m;b'=\dfrac{b}{2}=-\left(2m+1\right)\)
\(\Delta'=b'^2-ac=\left[-\left(2m+1\right)\right]^2-1.\left(4m^2+4m\right)\\ =4m^2+4m+1-4m^2-4m\\ =1>0\)
\(\Leftrightarrow\Delta'>0\) mà \(a=1\ne0\left(luônđúng\right)\)
=> pt luôn có 2 no pb x1;x2
ad đl viet có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(2m+1\right)=4m+2\\x_1x_2=\dfrac{c}{a}=4m^2+4m\end{matrix}\right.\)
ta có: \(\left|x_1-x_2\right|=x_1+x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=\left(x_1+x_2\right)^2\\ \Leftrightarrow\left(4m+2\right)^2-4\left(4m^2+4m\right)=\left(4m+2\right)^2\\ \Leftrightarrow-4\left(4m^2+4m\right)=0\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-1\left(loại\right)\end{matrix}\right.\)