Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu m = -1 thì : \(4x-3=0\Leftrightarrow x=\frac{3}{4}\) => pt có một nghiệm
Nếu \(m\ne-1\) , xét \(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)=m^2-2m+1-\left(m^2-m-2\right)=-m+3\)
Để pt có hai nghiệm phân biệt thì \(\Delta>0\) , tức là \(3-m>0\Leftrightarrow m< 3\)
Vậy để pt có hai nghiệm phân biệt thì \(\begin{cases}m< 3\\m\ne-1\end{cases}\)
b) Thay x = 2 vào pt đã cho , tìm được m = -6
Suy ra pt : \(-5x^2+14x-8=0\Leftrightarrow\left(5x-4\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{4}{5}\end{array}\right.\)
Vậy nghiệm còn lại là x = 4/5
c) Áp dụng hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-2\end{cases}\)
\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow4\left(x_1+x_2\right)=7x_1.x_2\)
\(\Rightarrow4.\left(2m-2\right)=7.\left(m-2\right)\Leftrightarrow8m-8=7m-14\Leftrightarrow m=-6\)
d) Ta có : \(A=2\left(x_1^2+x_2^2\right)+x_1.x_2=2\left(x_1+x_2\right)^2-3x_1.x_2=8\left(m-1\right)^2-3\left(m-2\right)\)
\(=8m^2-19m+14=8\left(m-\frac{19}{16}\right)^2+\frac{87}{32}\ge\frac{87}{32}\)
=> Min A = 87/32 <=> m = 19/16
dầu tiên bn tìm đenta phẩy
sau đó cm nó lớn hơn 0
theo hệ thức viet tính đc x1+x2=... và x1*x2=....
thay vào hệ thức đã cho tính đc ..
Ta có: \(\Delta^'=\left(2-m\right)^2-1\cdot\left(-3\right)=\left(m-2\right)^2+3>0\left(\forall m\right)\)
=> PT luôn có 2 nghiệm phân biệt
Theo hệ thức viete ta có: \(\hept{\begin{cases}x_1+x_2=2m-4\\x_1x_2=-3\end{cases}}\)
\(\Rightarrow\left|x_1x_2^2\right|+\left|x_1^2x_2\right|=18\)
\(\Leftrightarrow\left|x_1x_2\right|\left(\left|x_1\right|+\left|x_2\right|\right)=18\)
\(\Leftrightarrow\left|x_1\right|+\left|x_2\right|=6\)
Xét dấu x tự giải ra nhé
Xét phương trình trên có:
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)=m^2-4m+4-m^2+2m-4=-2m\)
Để phương trình trên có hai nghiệm phân biệt \(x_1;x_2\)điều kiện là:
\(\Delta'>0\Leftrightarrow-2m>0\Leftrightarrow m< 0\)
Với m<0. Áp dụng định lí Vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=-2\left(m-2\right)\\x_1.x_2=m^2-2m+4\end{cases}}\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(m-2\right)^2-2\left(m^2-2m+4\right)=2m^2-12m+8\)
Ta có:
\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
<=> \(\frac{2}{2m^2-12m+8}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)(điều kiện: \(2m^2-12m+8\ne0\))
<=> \(\frac{1}{m^2+4-6m}-\frac{1}{m^2+4-2m}=\frac{1}{15m}\)
<=> \(\frac{4m}{\left(m^2+4-6m\right)\left(m^2+4-2m\right)}=\frac{1}{15m}\)
<=> \(60m^2=\left(m^2+4\right)^2-8m\left(m^2+4\right)+12m^2\)
<=> \(\left(m^2+4\right)^2-8m\left(m^2+4\right)-48m^2=0\)
<=> \(\left(\frac{m^2+4}{m}\right)^2-8\frac{m^2+4}{m}-48=0\)
Đặt t=\(\frac{m^2+4}{m}< 0\)
Ta có phương trình ẩn t:
\(t^2-8t-48=0\Leftrightarrow\orbr{\begin{cases}t=-4\\t=12\left(loai\right)\end{cases}}\)
Với t=-4 ta có:
\(\frac{m^2+4}{m}=-4\Leftrightarrow m^2+4m+4=0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)( tmđk)
vậy m=-2
Phương trình có hai nghiệm phân biệt <=> Δ ≥ 0 <=> (-2)2 - 4.1/2.(m-1) ≥ 0 <=> 4 - 2m + 2 ≥ 0 <=> m ≤ 3
Theo hệ thức Viète : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=2m-2\end{cases}}\)
Ta có : \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\Leftrightarrow x_1x_2\left(x_1^2+x_2^2\right)+96=0\)
\(\Leftrightarrow x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+96=0\Leftrightarrow\left(2m-2\right)\left(18-2m\right)+96=0\)
\(\Leftrightarrow m^2-10-15=0\)
\(\Delta=b^2-4ac=100+60=160\)
\(\Delta>0\), áp dụng công thức nghiệm thu được \(m_1=5+2\sqrt{10}\left(ktm\right);m_2=5-2\sqrt{10}\left(tm\right)\)
Vậy với \(m=5-2\sqrt{10}\)thì thỏa mãn đề bài
\(a=\frac{1}{2};b=-2;c=m-1\)
\(\Delta=\left(-2\right)^2-4.\frac{1}{2}.\left(m-1\right)\)
\(\Delta=4-2\left(m-1\right)\)
\(\Delta=4-2m+2\)
\(\Delta=6-2m\)
để pt có 2 nghiệm phân biệt thì \(6-2m>0\)
\(< =>m< 3\)
áp dụng vi - ét
\(\hept{\begin{cases}x_1+x_2=\frac{2}{\frac{1}{2}}=4\\x_1x_2=\frac{m-1}{\frac{1}{2}}=2m-2\end{cases}}\)
\(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)
\(\left(2m-2\right)\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}\right)+48=0\)
\(\left(2m-2\right)\left(\frac{4^2-4m-4}{2}\right)+48=0\)
\(\left(2m-2\right)\left(6-2m\right)+48=0\)
\(12m-12-4m^2+4m+48=0\)
\(-4m^2+16m+36=0\)
\(\sqrt{\Delta}=\sqrt{16^2-4.\left(-4\right).36}=8\sqrt{13}\)
\(m_1=\frac{8\sqrt{13}-16}{-8}=2-\sqrt{13}\left(TM\right)\)
\(m_2=\frac{-8\sqrt{13}-16}{-8}=2+\sqrt{13}\left(KTM\right)\)
vậy \(m=2-\sqrt{13}\)thì thỏa mãn yêu cầu \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)
\(\Delta'=9-\left(3m+2\right)=7-3m\ge0\Rightarrow m\le\frac{7}{3}\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=3m+2\end{matrix}\right.\)
a/ Ta có: \(x_1+x_2=6\ne26\) \(\forall m\)
\(\Rightarrow\) không tồn tại m thỏa mãn
b/ \(x_1=x_2+2\Leftrightarrow x_1-x_2=2\)
\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2=4\)
\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-4x_1x_2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)
\(\Leftrightarrow36-4\left(3m+2\right)-4=0\)
\(\Leftrightarrow20-12m=0\Rightarrow m=\frac{5}{3}\) (thỏa mãn)
c/ Từ Viet: \(x_1+x_2=6\Rightarrow x_2=6-x_1\)
Thay vào: \(x_1^2=2x_2\Leftrightarrow x_1^2=2\left(6-x_1\right)\)
\(\Leftrightarrow x_1^2+2x_1-12=0\) \(\Rightarrow\left[{}\begin{matrix}x_1=-1-\sqrt{13}\Rightarrow x_2=7+\sqrt{13}\\x_1=-1+\sqrt{13}\Rightarrow x_2=7-\sqrt{13}\end{matrix}\right.\)
Mà \(x_1x_2=3m+2\)
\(\Rightarrow\left[{}\begin{matrix}\left(-1-\sqrt{13}\right)\left(7+\sqrt{13}\right)=3m+2\\\left(-1+\sqrt{13}\right)\left(7-\sqrt{13}\right)=3m+2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3m=-22-8\sqrt{13}\\3m=-22+8\sqrt{13}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=\frac{-22-8\sqrt{13}}{3}\\m=\frac{-22+8\sqrt{13}}{3}\end{matrix}\right.\)
d/ Theo Viet: \(x_1+x_2=6\) kết hợp với điều kiện bài toán ta được hệ:
\(\left\{{}\begin{matrix}x_1+x_2=6\\2x_1-3x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=5\\x_2=1\end{matrix}\right.\)
Mà \(3m+2=x_1x_2\)
\(\Rightarrow3m+2=5\)
\(\Rightarrow m=1\)