K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

a) Xét \(\Delta\) = b2 - 4ac = (-m)2 - 4(2m - 4)

= m2 - 8m + 16 = ( m - 4 )2

Ta có: ( m - 4 )2 \(\ge\) 0

=> Pt luôn có nghiệm

b) Vì phương trình luôn có nghiệm nên áp dụng định lí Ta- lét:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}==m\\x_1x_2=2m-4\end{matrix}\right.\)
Xét phương trình: x12 + x22 - 9

= x12 + x22 + 2x1x2 - 2x1x2 - 9

= (x1 + x2)2 - 2x1x2 - 9

= (-m)2 - 2(2m - 4) - 9

= m2 - 4m + 8 - 9

= m2 - 4m - 1 = m2 - 4m + 4 - 5

= (m - 2)2 - 5

Xét (m - 2)2 \(\ge\) 0

=> (m - 2)2 - 5 \(\ge\) -5

Dấu " =" xảy ra khi m - 2 = 0

<=> m = 2

NV
22 tháng 4 2019

\(\Delta=m^2-8m+16=\left(m-4\right)^2\ge0\Rightarrow\) pt luôn có nghiệm

Khi đó theo Viet \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)

\(A=x_1^2+x_2^2-9=\left(x_1+x_2\right)^2-2x_1x_2-9\)

\(A=m^2-2\left(2m-4\right)-9\)

\(A=m^2-4m-1\)

\(A=\left(m-2\right)^2-5\ge-5\)

\(\Rightarrow A_{min}=-5\) khi \(m=-2\)

5 tháng 5 2017

2 tháng 12 2017

Chọn C

5 tháng 2 2017

Chọn C

22 tháng 5 2018

* Nếu m= 0 thì bất phương trình đã cho trở  thành: 

0x < 0(  luôn đúng với mọi x).

* Nếu  m= 1 thì bất phương trình đã cho  trở thành:

0x < 1 ( luôn đúng với mọi x)

Tập tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x là {0; 1}

23 tháng 2 2019

Ta có  2 x - 1 ≥ 3 x - m ≤ 0 ⇔ x ≥ 2 x ≤ m . Hệ có nghiệm duy nhất khi và chỉ khi m = 2

6 tháng 11 2018

Điều kiện:  -1 < x < 1.

Với điều kiện trên,  phương trình đã cho tương đương: x =  5- 2m

Để phương trình đã cho có nghiệm thì:  -1 < 5- 2m < 1

⇔ - 6 < - 2 m < - 4 ⇔ 3 > m > 2 .

8 tháng 11 2018

+ Khi m = 0, bất phương trình trở thành - 2 x + 2 < 0 ⇔ x > 1 . Vậy m = 0 không thỏa mãn yêu cầu của bài toán.

+ Khi m ≠ 0 , bất phương trình vô nghiệm khi m x 2 + 2 m - 1 x + m + 2 ≥ 0 ,   ∀ x ∈ ℝ . ⇔ a > 0 ∆ ' ≤ 0 ⇔ m > 0 ( m - 1 ) 2 - m ( m + 2 ) ≤ 0 .

⇔ m > 0 - 4 m + 1 ≤ 0 ⇔ m > 0 m ≥ 1 4 ⇔ m ≥ 1 4

Chọn C.