K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 4 2022

Phương trình có 2 nghiệm khi:

\(\Delta=m^2-12\left(2m+1\right)\ge0\Leftrightarrow m^2-24m-12\ge0\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m}{3}\\x_1x_2=\dfrac{2m+1}{3}\end{matrix}\right.\)

Tích 2 nghiệm bằng -3 khi:

\(\dfrac{2m+1}{3}=-3\Rightarrow2m+1=-9\)

\(\Rightarrow m=-5\)

Khi đó tổng 2 nghiệm là: \(x_1+x_2=\dfrac{m}{3}=-\dfrac{5}{3}\)

13 tháng 5 2019

\(x^2-\left(2m+3\right)x+m^2+3m+2=0\left(1\right).\)

a, Với m = 1, \(\left(1\right)\Leftrightarrow x^2-7m+6=0\Leftrightarrow\left(m-1\right)\left(m-6\right)\Leftrightarrow\orbr{\begin{cases}m=1\\m=6\end{cases}}\)

b, Với x = 2 \(\left(1\right)\Leftrightarrow4-2\left(2m+3\right)+m^2+3m+2=0\)

\(\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}\)

Với m = 0, \(\left(1\right)\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Với m = 1, \(\left(1\right)\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

c, \(\Delta=4m^2+12m+9-4m^2-12m-8=1>0\)

Vì \(\Delta>0\)nên phương trình có 2 nghiệm phân biệt với mọi m.

13 tháng 5 2019

d, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2m+3\left(1\right)\\x_1.x_2=m^2+3m+2\left(2\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=1\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(2m+3\right)^2-2\left(m^2+3m+2\right)=1\)

\(\Leftrightarrow4m^2+12m+9-2m^2-6m-4-1=0\)

\(\Leftrightarrow2m^2-6m-4=0\Leftrightarrow m^2-3m-2=0\Leftrightarrow m=\frac{3\pm\sqrt{17}}{2}\)

c, Phương trình có nghiệm này bằng 3 nghiệm kia:\(\Leftrightarrow x_1=3x_2\left(3\right)\)

Kết hợp (1) và (3) ta có hệ : \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1=3x_2\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=\frac{6m+9}{5}\\x_2=\frac{2m+3}{5}\end{cases}}\left(I\right)}\)

Kết hợp (I) và (2) ta được: \(\frac{\left(6m+9\right)\left(2m+3\right)}{25}=m^2+3m+2\)

\(\Leftrightarrow25m^2+75m+50=12m^2+36m^2+27\)

\(\Leftrightarrow13m^2+39m^2+23=0\)

...

28 tháng 5 2015

a) x = 0 là nghiệm của phương trình

=> (m-1).02 -2.m.0 + m + 1 = 0

<=> m + 1 = 0 <=> m = -1

vậy m = -1 thì pt có nghiệm là x = 0

b) PT có 2 nghiệm thì trước hết pt đã cho là phương trình bậc 2 <=> m - 1\(\ne\) 0 <=> m \(\ne\)1

 \(\Delta\)' = (-m)2 - (m - 1)(m +1) = m2 - (m2 - 1) = 1 > 0

=> phương trình đã cho có 2 nghiệm là:

x1 = \(\frac{m+1}{m-1}\) ; x2 = \(\frac{m-1}{m-1}\) = 1

+) Để x1 .x2 = 5 <=> \(\frac{m+1}{m-1}\) = 5 <=> m +1 = 5( m - 1)

<=> m +1 = 5m - 5

<=> 6 = 4m <=> m = 3/2 (Thoả mãn)

+) Khi đó x1  + x2 = \(\frac{m+1}{m-1}\) + 1 = \(\frac{m+1+m-1}{m-1}=\frac{2m}{m-1}=\frac{2.\frac{3}{2}}{\frac{3}{2}-1}=\frac{3}{\frac{1}{2}}=6\)

21 tháng 5 2020

Mình không đồng ý với phần tìm đen-ta của bạn Trần Thị Loan

Phương trình (m-1)x2 - 2mx + m + 1 = 0 ( a=m-1; b=-2m; c=m+1)

​đen-ta = (-2m)2 - 4.(m-1).(m=1)=4

Vì đen-ta = 4 > 0 nên phương trình có 2 nghiệm phân biệt với mọi m

17 tháng 4 2017

Phan 1 theo delta

Phần 2 thì |...|=\(\sqrt{\left(x1+x2\right)^2-4.x1x2}\)

Áp dụng Vi-et thay vào mà tính nhé

18 tháng 4 2017

\(x^2-\left(2m+3\right)+m-3=0\)

a/ ( a = 1; b = -(2m+3); c = m - 3 )

\(\Delta=b^2-4ac\)

    \(=\left[-\left(2m+3\right)\right]^2-4.1.\left(m-3\right)\)

    \(=4m^2+12m+9-4m+12\)  

    \(=4m^2+8m+21\)

    \(=\left(2m\right)^2+8m+2^2-2^2+21\)

    \(=\left(2m+2\right)^2+17>0\forall m\) 

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m+3\\P=x_1x_2=\frac{c}{a}=m-3\end{cases}}\)

Đặt  \(A=!x_1-x_2!\)

\(\Rightarrow A^2=\left(!x_1-x_2!\right)^2=x_1^2-2x_1x_2+x_2^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(\Leftrightarrow A^2=\left(2m+3\right)^2-4\left(m-3\right)=4m^2+12m+9-4m+12\)

\(\Leftrightarrow A^2=4m^2+8m+21=\left(2m\right)^2+8m+2^2-2^2+21\)

\(\Leftrightarrow A^2=\left(2m+2\right)^2+17\ge17\)

\(MinA^2=17\Rightarrow MinA=\sqrt{17}\Leftrightarrow\left(2m+2\right)^2=0\Leftrightarrow m=-1\)

Vậy m = -1 là giá trị cần tìm

23 tháng 7 2021

còn cái nịt

26 tháng 4 2021

giải dùm với Ạ.

27 tháng 4 2021

m đâu bạn ? 

28 tháng 2 2019

1, 

a) \(x^2-4x+m=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.m=16-4m\)

Để pt có nghiệm : \(\Delta\ge0\)

<=>\(16-4m\ge0\)

\(\Leftrightarrow16\ge4m\)

\(\Leftrightarrow m\le4\)