Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-\left(2m+3\right)x+m^2+3m+2=0\left(1\right).\)
a, Với m = 1, \(\left(1\right)\Leftrightarrow x^2-7m+6=0\Leftrightarrow\left(m-1\right)\left(m-6\right)\Leftrightarrow\orbr{\begin{cases}m=1\\m=6\end{cases}}\)
b, Với x = 2 \(\left(1\right)\Leftrightarrow4-2\left(2m+3\right)+m^2+3m+2=0\)
\(\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}\)
Với m = 0, \(\left(1\right)\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Với m = 1, \(\left(1\right)\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
c, \(\Delta=4m^2+12m+9-4m^2-12m-8=1>0\)
Vì \(\Delta>0\)nên phương trình có 2 nghiệm phân biệt với mọi m.
d, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2m+3\left(1\right)\\x_1.x_2=m^2+3m+2\left(2\right)\end{cases}}\)
Ta có: \(x_1^2+x_2^2=1\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
\(\Leftrightarrow\left(2m+3\right)^2-2\left(m^2+3m+2\right)=1\)
\(\Leftrightarrow4m^2+12m+9-2m^2-6m-4-1=0\)
\(\Leftrightarrow2m^2-6m-4=0\Leftrightarrow m^2-3m-2=0\Leftrightarrow m=\frac{3\pm\sqrt{17}}{2}\)
c, Phương trình có nghiệm này bằng 3 nghiệm kia:\(\Leftrightarrow x_1=3x_2\left(3\right)\)
Kết hợp (1) và (3) ta có hệ : \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1=3x_2\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=\frac{6m+9}{5}\\x_2=\frac{2m+3}{5}\end{cases}}\left(I\right)}\)
Kết hợp (I) và (2) ta được: \(\frac{\left(6m+9\right)\left(2m+3\right)}{25}=m^2+3m+2\)
\(\Leftrightarrow25m^2+75m+50=12m^2+36m^2+27\)
\(\Leftrightarrow13m^2+39m^2+23=0\)
...
a) x = 0 là nghiệm của phương trình
=> (m-1).02 -2.m.0 + m + 1 = 0
<=> m + 1 = 0 <=> m = -1
vậy m = -1 thì pt có nghiệm là x = 0
b) PT có 2 nghiệm thì trước hết pt đã cho là phương trình bậc 2 <=> m - 1\(\ne\) 0 <=> m \(\ne\)1
\(\Delta\)' = (-m)2 - (m - 1)(m +1) = m2 - (m2 - 1) = 1 > 0
=> phương trình đã cho có 2 nghiệm là:
x1 = \(\frac{m+1}{m-1}\) ; x2 = \(\frac{m-1}{m-1}\) = 1
+) Để x1 .x2 = 5 <=> \(\frac{m+1}{m-1}\) = 5 <=> m +1 = 5( m - 1)
<=> m +1 = 5m - 5
<=> 6 = 4m <=> m = 3/2 (Thoả mãn)
+) Khi đó x1 + x2 = \(\frac{m+1}{m-1}\) + 1 = \(\frac{m+1+m-1}{m-1}=\frac{2m}{m-1}=\frac{2.\frac{3}{2}}{\frac{3}{2}-1}=\frac{3}{\frac{1}{2}}=6\)
Mình không đồng ý với phần tìm đen-ta của bạn Trần Thị Loan
Phương trình (m-1)x2 - 2mx + m + 1 = 0 ( a=m-1; b=-2m; c=m+1)
đen-ta = (-2m)2 - 4.(m-1).(m=1)=4
Vì đen-ta = 4 > 0 nên phương trình có 2 nghiệm phân biệt với mọi m
Phan 1 theo delta
Phần 2 thì |...|=\(\sqrt{\left(x1+x2\right)^2-4.x1x2}\)
Áp dụng Vi-et thay vào mà tính nhé
\(x^2-\left(2m+3\right)+m-3=0\)
a/ ( a = 1; b = -(2m+3); c = m - 3 )
\(\Delta=b^2-4ac\)
\(=\left[-\left(2m+3\right)\right]^2-4.1.\left(m-3\right)\)
\(=4m^2+12m+9-4m+12\)
\(=4m^2+8m+21\)
\(=\left(2m\right)^2+8m+2^2-2^2+21\)
\(=\left(2m+2\right)^2+17>0\forall m\)
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m+3\\P=x_1x_2=\frac{c}{a}=m-3\end{cases}}\)
Đặt \(A=!x_1-x_2!\)
\(\Rightarrow A^2=\left(!x_1-x_2!\right)^2=x_1^2-2x_1x_2+x_2^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=\left(2m+3\right)^2-4\left(m-3\right)=4m^2+12m+9-4m+12\)
\(\Leftrightarrow A^2=4m^2+8m+21=\left(2m\right)^2+8m+2^2-2^2+21\)
\(\Leftrightarrow A^2=\left(2m+2\right)^2+17\ge17\)
\(MinA^2=17\Rightarrow MinA=\sqrt{17}\Leftrightarrow\left(2m+2\right)^2=0\Leftrightarrow m=-1\)
Vậy m = -1 là giá trị cần tìm
Phương trình có 2 nghiệm khi:
\(\Delta=m^2-12\left(2m+1\right)\ge0\Leftrightarrow m^2-24m-12\ge0\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m}{3}\\x_1x_2=\dfrac{2m+1}{3}\end{matrix}\right.\)
Tích 2 nghiệm bằng -3 khi:
\(\dfrac{2m+1}{3}=-3\Rightarrow2m+1=-9\)
\(\Rightarrow m=-5\)
Khi đó tổng 2 nghiệm là: \(x_1+x_2=\dfrac{m}{3}=-\dfrac{5}{3}\)