Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện : \(x\ge-\frac{3}{4}\)
Xét : \(\sqrt{x+1+\sqrt{x+\frac{3}{4}}}=\sqrt{\left(x+\frac{3}{4}\right)+2.\sqrt{x+\frac{3}{4}}.\frac{1}{2}+\frac{1}{4}}=\sqrt{\left(\sqrt{x+\frac{3}{4}}+\frac{1}{2}\right)^2}=\sqrt{x+\frac{3}{4}}+\frac{1}{2}\)
\(\Rightarrow x+\sqrt{x+\frac{3}{4}}+\frac{1}{2}=a\Leftrightarrow\left(x+\frac{3}{4}\right)+\sqrt{x+\frac{3}{4}}-\left(\frac{1}{4}+a\right)=0\)
Đặt \(y=\sqrt{x+\frac{3}{4}},y\ge0\). pt trên trở thành \(y^2+y-\left(a+\frac{1}{4}\right)=0\)
Để pt có nghiệm theo y thì \(\Delta=1^2+4.\left(a+\frac{1}{4}\right)=2\left(2a+1\right)\ge0\Leftrightarrow a\ge-\frac{1}{2}\)
Khi đó : \(x_1=\frac{-1-\sqrt{2\left(2a+1\right)}}{2}\), \(x_2=\frac{-1+\sqrt{2\left(2a+1\right)}}{2}\)
Điều kiện \(x\ge\frac{-1}{2}\)
Ta có : \(\sqrt{2x+1}+x^2-3x+1=0\)
\(\Leftrightarrow2\sqrt{2x+1}+2x^2-6x+2=0\)
\(\Leftrightarrow-\left(2x+1\right)+2\sqrt{2x+1}-1+2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow2\left(x-1\right)^2-\left(\sqrt{2x+1}-1\right)^2=0\)
\(\Leftrightarrow\left[\sqrt{2}\left(x-1\right)-\sqrt{2x+1}+1\right].\left[\sqrt{2}\left(x-1\right)+\sqrt{2x+1}-1\right]=0\)
Tới đây bạn tự làm nhé!
\(pt\Leftrightarrow\left(x^3+2\sqrt{2}\right)+2x^2+2\sqrt{2}x=0\)
\(\Leftrightarrow\left(x+\sqrt{2}\right)\left(x^2-\sqrt{2}x+2\right)+2x\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{2}\right)\left[x^2+\left(2-\sqrt{2}\right)x+2\right]=0\)
\(\Leftrightarrow x=-\sqrt{2}\)
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y