K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

a) Ta có

Biến đổi tử phân số A

x^3-x^2-10x-8=(x^3-4x^2)+(3x^2-12x)+(2x-8)

=x^2(x-4)+3x(x-4)+2(x-4)=(x^2+3x+2)(x-4)

=(x^2+x+2x+2)(x-4)=[x(x+1)+2(x+1)](x-4)

=(x+1)(x+2)(x+4) (1)

Biến đổi mẫu của phân số A:

x^3-4x^2+5x-20=x^2(x-4)+5(x-4)=(x^2+5)(x-4) (2)

Từ (1) và (2) suy ra:

A=(x+1)(x+2)/x^2+5

23 tháng 1 2018

\(A=\dfrac{x^3-x^2-10x-8}{x^3-4x^2+5x-20}\\ ĐKXĐ:x\ne4\)

a) Với \(x\ne4\)

\(\text{Ta có : }A=\dfrac{x^3-x^2-10x-8}{x^3-4x^2+5x-20}\\ =\dfrac{x^3+x^2-2x^2-2x-8x-8}{\left(x^3-4x^2\right)+\left(5x-20\right)}\\ =\dfrac{\left(x^3+x^2\right)-\left(2x^2+2x\right)-\left(8x+8\right)}{x^2\left(x-4\right)+5\left(x-4\right)}\\ =\dfrac{x^2\left(x+1\right)-2x\left(x+1\right)-8\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left(x^2-2x-8\right)\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ = \dfrac{\left(x^2-4x+2x-8\right)\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left[\left(x^2-4x\right)+\left(2x-8\right)\right]\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left[x\left(x-4\right)+2\left(x-4\right)\right]\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left(x+2\right)\left(x-4\right)\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+5}\)

Vậy \(A=\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+5}\) với \(x\ne4\)

b) Với \(x\ne4\)

Để \(A\ge0\) thì \(\Rightarrow\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+5}\ge0\) \(\Rightarrow\left(x+2\right)\left(x+1\right)\ge0\left(\text{Vì }x^2+5>0\right)\) Lập bảng xét dấu: x+2 x+1 (x+1)(x+2) (x+1)(x+2) x -2 -1 0 0 0 0 _ + + _ _ + + _ + \(\Rightarrow\left[{}\begin{matrix}x\le-2\\x\ge-1\end{matrix}\right.\) Vậy để \(A\ge0\) thì \(x\le-2;x\ge-1\)

12 tháng 4 2019

Có: A=\(\frac{x^3-x^2-10x-8}{x^3-4x^2+5x-20}\)

A=\(\frac{\left(x^3-4x^2\right)+\left(3x^2-10x-8\right)}{x^2\left(x-4\right)+5\left(x-4\right)}\)

A=\(\frac{x^2\left(x-4\right)+\left(3x^2-12x+2x-8\right)}{\left(x^2+5\right)\left(x-4\right)}\)

A=\(\frac{x^2\left(x-4\right)+3x\left(x-4\right)+2\left(x-4\right)}{\left(x^2+5\right)\left(x-4\right)}\) ĐKXĐ:\(x\ne4\)

A=\(\frac{\left(x^2+3x+2\right)\left(x-4\right)}{\left(x^2+5\right)\left(x-4\right)}\) A=\(\frac{\left(x^2+x+2x+2\right)\left(x-4\right)}{\left(x^2+5\right)\left(x-4\right)}\) A=\(\frac{\left[x\left(x+1\right)+2\left(x+1\right)\right]\left(x-4\right)}{\left(x^2+5\right)\left(x-4\right)}\) A=\(\frac{\left(x+1\right)\left(x+2\right)\left(x-4\right)}{\left(x^2+5\right)\left(x-4\right)}\) A=\(\frac{\left(x+1\right)\left(x+2\right)}{x^2+5}\)

Vậy A=\(\frac{\left(x+1\right)\left(x+2\right)}{x^2+5}\)với \(x\ne4\)

12 tháng 4 2019

b) Có A=\(\frac{\left(x+1\right)\left(x+2\right)}{x^2+5}\text{với x}\ne4\)

A=0⇔\(\frac{\left(x+1\right)\left(x+2\right)}{x^2+5}=0\)

⇔(x+1)(x+2)=0 (vì \(x^2+5\ne0\))

\(\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)(Thoả mãn ĐKXĐ)

Vậy với x=1 hoặc x=2 thì A=0

10 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

\(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)\(=\frac{x^2}{5\left(x+5\right)}+\frac{2\left(x-5\right)}{x}+\frac{5\left(x+10\right)}{x\left(x+5\right)}\)

\(=\frac{x^3}{5x\left(x+5\right)}+\frac{10\left(x-5\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{25\left(x+10\right)}{5x\left(x+5\right)}\)

\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+25\left(x+10\right)}{5x\left(x+5\right)}=\frac{x^3+10\left(x^2-25\right)+25x+250}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2-250+25x+250}{5x\left(x+5\right)}=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)\(=\frac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)\(=\frac{\left(x+5\right)^2}{5\left(x+5\right)}=\frac{x+5}{5}\)

b) \(x^2-3x=0\)\(\Leftrightarrow x\left(x-3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

So sánh với ĐKXĐ, ta thấy \(x=0\)không thoả mãn

Thay \(x=3\)vào biểu thức ta được: \(P=\frac{3+5}{5}=\frac{8}{5}\)

c) Để \(P=-4\)thì \(\frac{x+5}{5}=-4\)\(\Leftrightarrow x+5=-20\)\(\Leftrightarrow x=-25\)( thoả mãn ĐKXĐ )

Vậy \(P=-4\)\(\Leftrightarrow x=-25\)

d) Để \(P\ge0\)thì \(\frac{x+5}{5}\ge0\)\(\Leftrightarrow x+5\ge0\)( vì \(5>0\))\(\Leftrightarrow x\ge-5\)

So sánh với ĐKXĐ, ta thấy x phải thoả mãn \(x>-5\)và \(x\ne0\)

Vậy \(P\ge0\)\(\Leftrightarrow\)\(x>-5\)và \(x\ne0\)

23 tháng 8 2016

a) \(\frac{x^2-y^2}{\left(x+y\right)\left(ay-\text{ax}\right)}=\frac{\left(x+y\right)\left(x-y\right)}{-a\left(x+y\right)\left(x-y\right)}=\frac{-1}{a}\)

b) \(\frac{2ax-2x-3y+3ay}{4ax+\text{4x}+6y+6ay}=\frac{2x\left(a-1\right)+3y\left(a-1\right)}{\text{4x}\left(a+1\right)+6y\left(a+1\right)}\)

\(=\frac{\left(a-1\right)\left(2x+3y\right)}{2\left(a+1\right)\left(2x+3y\right)}=\frac{a-1}{2\left(a+1\right)}\)

23 tháng 8 2016

lêu lêu lêu 

29 tháng 10 2018

\(P=\frac{2\left(x-2\right)\left(x+2\right)}{x^2+x+5}.\frac{5\left(x^2+x+5\right)}{\left(x-4\right)\left(x+3\right)}.\frac{\left(x-1\right)\left(x-4\right)}{10\left(x-2\right)\left(x+2\right)}=\frac{x-1}{x+3}\)

ĐK: \(x\ne\left\{4;-3;1;2;-2\right\}\)

b, \(P\in Z\Rightarrow\frac{x-1}{x+3}\in Z\Rightarrow x-1⋮\left(x+3\right)\Rightarrow-4⋮\left(x+3\right)\Rightarrow\left(x+3\right)\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow x\in\left\{-7;-5;-4;-2;-1;1\right\}\)

\(\Rightarrow P\in\left\{2;3;5;-3;-1;0\right\}\)

Bài 1:

a) x2x≠2

Bài 2:

a) x0;x5x≠0;x≠5

b) x210x+25x25x=(x5)2x(x5)=x5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

c) Để phân thức có giá trị nguyên thì x5xx−5x phải có giá trị nguyên.

=> x=5x=−5

Bài 3:

a) (x+12x2+3x21x+32x+2)(4x245)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

=(x+12(x1)+3(x1)(x+1)x+32(x+1))2(2x22)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

=(x+1)2+6(x1)(x+3)2(x1)(x+1)22(x21)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

=(x+1)2+6(x2+3xx3)(x1)(x+1)2(x1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

=[(x+1)2+6(x2+2x3)]25=[(x+1)2+6−(x2+2x−3)]⋅25

=[(x+1)2+6x22x+3]25=[(x+1)2+6−x2−2x+3]⋅25

=[(x+1)2+9x22x]25=[(x+1)2+9−x2−2x]⋅25

=2(x+1)25+18525x245x=2(x+1)25+185−25x2−45x

=2(x2+2x+1)5+18525x245x=2(x2+2x+1)5+185−25x2−45x

=2x2+4x+25+18525x245x=2x2+4x+25+185−25x2−45x

=2x2+4x+2+18525x245x=2x2+4x+2+185−25x2−45x

=2x2+4x+20525x245x=2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

19 tháng 12 2019

ê k bn với mk ik

😘 😘 😘 😘

3 tháng 1 2019

Đcm học ngu k biết xài caskov

7 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-3\end{cases}}\)

b) \(P=1+\frac{x+3}{x^2+5x+6}\div\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{\left(x-2\right)\left(x+2\right)}{6\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{x+4}{6}\)

c) Để P = 0

\(\Leftrightarrow\frac{x+4}{6}=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Để P = 1

\(\Leftrightarrow\frac{x+4}{6}=1\)

\(\Leftrightarrow x+4=6\)

\(\Leftrightarrow x=2\)

d) Để P > 0

\(\Leftrightarrow\frac{x+4}{6}>0\)

\(\Leftrightarrow x+4>0\)(Vì 6>0)

\(\Leftrightarrow x>-4\)

28 tháng 6 2017

Phép nhân các phân thức đại số