Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, điều kiện xác định là \(x\ne1;x\ne-1\)
\(\frac{3x+3}{x^2-1}\)
\(=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{3}{x-1}\)
b, để \(\frac{3x+3}{x^2-1}=-2\Rightarrow\frac{3}{x-1}=-2\)
\(\Rightarrow-2x+2=3\)
\(\Rightarrow-2x=1\)
\(\Rightarrow x=-\frac{1}{2}\)
a. ĐKXĐ: x2 - 1\(\ne\)0 (=) x \(\ne\)\(\pm\)1
b. \(\frac{3x+3}{x^2-1}\)
\(=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{3}{x+1}\)với x \(\pm\)1
c. \(\frac{3}{x+1}=-2\)
\(\Rightarrow\)\(\left(x+1\right).\left(-2\right)=3\)
\(-2x-2=3\)
\(-2x=5\)
\(x=-\frac{5}{2}\)(t/m đk)
\(P=\dfrac{3x^2+6x+3}{x+1}\)
\(a,\) Điều kiện xác định: \(x+1\ne0\Leftrightarrow x\ne-1\)
\(b,P=\dfrac{3x^2+6x+3}{x+1}=\dfrac{3\left(x^2+2x+1\right)}{x+1}=\dfrac{3\left(x+1\right)^2}{x+1}=3\left(x+1\right)=3x+3\)
\(c,x=1\Rightarrow P=3.1+3=6\)
Phân thức \(A=\dfrac{x^2+2x+1}{x^2+1}\) được xác định
\(\Leftrightarrow x^2+1\ne0\\ \Leftrightarrow x^2\ne-1\)
Mà \(x^2\ne-1\forall x\)
\(\Rightarrow A=\dfrac{x^2+2x+1}{x^2+1}\) được xác định với mọi giá trị của biến x