K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2021

Xét bài toán phụ sau:

Nếu \(a+b+c=0\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)  \(\left(a,b,c\ne0\right)\)

Thật vậy

Ta có: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{a+b+c}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{0}{abc}}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

Bài toán được chứng minh

Quay trở lại, ta sẽ áp dụng bài toán phụ vào bài chính:

Ta có: \(P=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}+...+\sqrt{\frac{1}{2^2}+\frac{1}{779^2}+\frac{1}{801^2}}\)

Vì \(2+1+\left(-3\right)=0\) nên:

\(\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{\left(-3\right)^2}}=\sqrt{\left(\frac{1}{2}+\frac{1}{1}-\frac{1}{3}\right)^2}=\frac{1}{2}+1-\frac{1}{3}\)

Tương tự ta tính được:

\(\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}=\frac{1}{2}+\frac{1}{3}-\frac{1}{5}\) ; ... ; \(\sqrt{\frac{1}{2^2}+\frac{1}{799^2}+\frac{1}{801^2}}=\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)

\(\Rightarrow P=\frac{1}{2}+1-\frac{1}{3}+\frac{1}{2}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)

\(=\frac{1}{2}\cdot400+\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{799}-\frac{1}{801}\right)\)

\(=200+\frac{800}{801}=\frac{161000}{801}=\frac{a}{b}\Rightarrow\hept{\begin{cases}a=161000\\b=801\end{cases}}\)

\(\Rightarrow Q=161000-801\cdot200=800\)

27 tháng 4 2017

Gọi ƯCLN(21n+4,14n+3)=d

=>21n+4\(⋮\)d =>42n+8\(⋮\)d (1)

=>14n+3\(⋮\)d =>42n+9\(⋮\)d (2)

Từ (1) và (2) => (42n+9)-(42n+8)\(⋮\)d =>1\(⋮\)d =>d=1 (vì d=ƯCLN) 

=> \(\frac{21n+4}{14n+3}\)là phân số tối giản, với mọi n\(\in\)  N (ĐCCM)

Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản với mọi n\(\in\)N

12 tháng 8 2020

Ap dung \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Ta co \(P< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2007}}-\frac{1}{\sqrt{2008}}\right)\)  

=> \(P< 2\left(1-\frac{1}{\sqrt{2008}}\right)< 2.1=2\)

Suy ra P khong phai so nguyen to

8 tháng 9 2017

ta sẽ chứng minh với \(a\in Q\) thì \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\) là số hữ tỉ 

ta có \(M=\frac{1}{1}+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{1}{1}+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}+\frac{2}{a}-\frac{2}{a+1}-\frac{2}{a\left(a+1\right)}-\frac{2}{a}+\frac{2}{a+1}+\frac{2}{a\left(a+1\right)}\)

\(=\left(\frac{1}{1}+\frac{1}{a}-\frac{1}{a+1}\right)^2+2\left(\frac{1}{a}+\frac{1}{a\left(a+1\right)}-\frac{1}{a+1}\right)\)

\(=\left(1+\frac{1}{a}+\frac{1}{a+1}\right)^2+2\left(\frac{1+a-\left(a+1\right)}{a\left(a+1\right).1}\right)=\left(1+\frac{1}{a}+\frac{1}{a+1}\right)^2\)

=> \(\sqrt{M}=\left|1+\frac{1}{a}+\frac{1}{a+1}\right|\) là số hữu tỉ 

=> A lá số hữ tỉ 

Áp dụng thì ta có mỗi phân thức là số hữ tỉ nên tổng của nó là sô hưux tỉ

21 tháng 10 2015

Giả sử cả 3 số nguyên dương a,b,c là số lẻ khi đó từ giả thiết suy ra a+b = abc

vì a,b,c là số lẻ nên a+b là số chẵn và a.b.clà số lẻ do đó a+b = abc là vô lí

Do đó điều giả sử là sai vậy 1 trong 3 số đã cho có ít nhất 1 số chẵn suy ra abc là số chẵn

gọi d=( n+1, 2n+1)

=> n+1 chia hết cho d=> 2n+2 chia hết cho d

=>2n+1 chia hết cho d=> 2n+1 chia hết cho d

=> ( 2n+2)-( 2n+1) chia hết cho d

=> 1 chia hết cho d

=> d= -1 hoặc +1

=> phân số n+1/2n+1 là phân số tối giản

b, giải 

  Gọi d là \(UCLN\left(n+1,n+2\right)\)

\(\Rightarrow\orbr{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\)

\(\Rightarrow\left(n+1\right)-\left(n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow UCLN\left(n+1,n+2\right)=1\)

\(\Rightarrow\frac{n+1}{n+2}\) là phân số tối giản (ĐPCM)

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

Xét số hạng tổng quát $\frac{1}{(n+1)\sqrt{n}}$
Ta có:

$\frac{1}{(n+1)\sqrt{n}}=\frac{2}{2(n+1)\sqrt{n}}=\frac{2}{(n+1)\sqrt{n}+(n+1)\sqrt{n}}$
$< \frac{2}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{2(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{2(\sqrt{n+1}-\sqrt{n})}{\sqrt{n(n+1)}}=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}$

Do đó:

$P< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+....+\frac{2}{\sqrt{2007}}-\frac{2}{\sqrt{2008}}=2-\frac{2}{\sqrt{2008}}< 2$

Do đó $P$ không thể là số nguyên tố.

7 tháng 9 2016

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

7 tháng 9 2016

Bạn nói rõ hơn được không???