Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=(6n+4-5):(3n+2)=2-5:(3n+2)
a) để M nguyên thì (3n+2) phải là ước của 5
=> 3n+2={-5; -1; 1; 5}
+/ 3n+2=-5 => n=-7/3 (loại)
+/ 3n+2=-1 => n=-1; M=7
+/ 3n+2=1 => n=-1/3 loại
+/ 3n+2=5 => n=1; M=-3
Đs: n={-1; 1}
b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0
Mmin=2-5/2=-1/2
Giải câu b trước nha.
b) Ta có: A = 2n+2/2n = 2n/2n + 2/2n = 1 + 1/n
Có 1 là số nguyên => Để A là số nguyên thì 1/n là số nguyên
=> n = {-1;1}
Vậy n=1 hoặc n=-1 thì A là số nguyên.
a) Để A là phân số thì n khác 1 và -1 ( theo câu b )
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a ) Để \(A=\frac{2n+3}{n}\) là phân số \(\Leftrightarrow n\ne0\)
b ) \(\frac{2n+3}{n}=\frac{2n}{n}+\frac{3}{n}=2+\frac{3}{n}\)
Để \(2+\frac{3}{n}\) là số nguyên \(\Leftrightarrow\frac{3}{n}\) là số nguyên
\(\Rightarrow n\inƯ\left(3\right)=\){ - 3; - 1; 1; 3 }
Vậy n = { - 3; - 1 ; 1 ; 3 }
Để A là phân số thì \(n\ne0\)
ta có:\(A=\frac{2n+3}{n}=\frac{2n}{n}+\frac{3}{n}=2+\frac{3}{n}\)
\(\Rightarrow\)Để Alà số nguyên thì \(n\inƯ\left(3\right)\)
\(Ư\left(3\right)=\hept{ }1;-1;3;-3\)
\(\Rightarrow n\in\left\{1;-1;3;-3\right\}\)thì Alà số nguyên