Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(B=\frac{10n}{n-3}=\frac{10n-30+30}{n-3}=10+\frac{30}{n-3}\)
a) B nguyên <=> \(\frac{30}{n-3}\)nguyên <=> n - 3 \(\inƯ\left(30\right)=\left\{\pm1;\pm2;\pm3;\pm5;\pm6;\pm10;\pm15;\pm30\right\}\)
Ta có bảng:
n-3 | -30 | -15 | -10 | -6 | -5 | -3 | -2 | -1 | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |
n | -27 | -12 | -7 | -3 | -2 | 0 | 1 | 2 | 4 | 5 | 6 | 8 | 9 | 13 | 18 | 33 |
tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm |
Vậy n ...
b) B lớn nhất <=> \(\frac{30}{n-3}\) đạt giá trị lớn nhất
TH1: n - 3 < 0 => \(\frac{30}{n-3}< 0\)loại
TH2: n - 3 > 0
=> \(\frac{30}{n-3}>0\) khi đó: \(\frac{30}{n-3}\) lớn nhất <=> n - 3 = 1 <=> n = 4 ( thỏa mãn vì 4 - 3 > 0)
Vậy Giá trị lớn nhất của B = \(\frac{10.4}{4-3}=40\) tại n = 1
ta có: \(B=\frac{10n}{n-3}\left(n\ne3\right)\)
=> B=\(\frac{10\left(n-3\right)+30}{n-3}=10+\frac{30}{n-3}\)
a) Để B có giá trị nguyên thì \(\frac{30}{n-3}\)có giá trị nguyên
=> 30 chia hết cho n-3
Vì n nguyên => n-3 nguyên => n-3=Ư(30)={-30;-10;-6;-5;-2;-3;-1;1;2;3;5;6;10;30}
bạn lập bảng tìm giá trị của n
b) \(B=10+\frac{30}{n-3}\left(n\ne3\right)\)
để B đạt GTLN thì \(\frac{30}{n-3}\)đạt GTLN
=> n-3 là số nguyên dương nhỏ nhất
=> n-3=1
=> n=4 (tmđk)
Vào đay:Câu hỏi của Hồ Châu Ngân - Toán lớp 6 - Học toán với OnlineMath
a) \(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)là số nguyên tương đương với \(\frac{2}{n-1}\)là số nguyên
mà \(n\)là số nguyên nên \(n-1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow n\in\left\{-1,0,2,3\right\}\).
b) \(\frac{3n+1}{n+1}=\frac{3n+3-2}{n+1}=3-\frac{2}{n+1}\)là số nguyên tương đương với \(\frac{2}{n+1}\)là số nguyên
mà \(n\)là số nguyên nên \(n+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow n\in\left\{-3,-2,0,1\right\}\).