K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

24 tháng 5 2017

a) Để A là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)

Vậy \(n\ne1\)để A là phân số

b) Để A là số nguyên thì \(\left(n-1\right)\in\)Ư(5) = {1;-1;5;-5}

Ta có bảng sau:

n-11-15-5
n206-4

Vậy \(n\in\){-4;0;2;6} để A là số nguyên

24 tháng 5 2017

a)Điều kiện của n để A là phân số là:

        \(n-1\ne\Rightarrow n\ne1\)

b)Để A nguyên thì 5 chia hết cho n-1. Hay \(\left(n-1\right)\inƯ\left(5\right)\)

            Vậy Ư(5) là:[1,-1,5,-5] 

                       Do đó ta có bảng sau:

n-1-5-115
n-4026

             Do đó để A nguyên thì \(n\in\left[-4;0;2;6\right]\)

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

14 tháng 2 2019

a,Với \(n\in Z\)ta có \(2n+1\in Z;n-3\in Z\)

Do đó để \(A=\frac{2n+1}{n-3}\)là phân số thì \(n-3\ne0\Rightarrow n\ne3\)

Vậy với n thuộc Z và n khác 3 thì A là phân số

b,\(A=\frac{2n+1}{n-3}=\frac{2\left(n-3\right)+1+6}{n-3}=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\)

Để A nguyên 

\(\Rightarrow7⋮n-3\Rightarrow n-3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

\(\Rightarrow n\in\left\{4;2;10;-4\right\}\)

Vậy..........................

25 tháng 6 2021

a) Để a là phân số thì \(n+4\ne0\Rightarrow n\ne-4\)

b) \(a=\frac{n+9}{n+4}=\frac{n+4+5}{n+4}=1+\frac{5}{n+4}\)

\(a=\frac{1}{2}\Rightarrow1+\frac{5}{n+4}=\frac{1}{2}\)

\(\Rightarrow\frac{5}{n+4}=\frac{1}{2}-1=-\frac{1}{2}\)

\(\frac{5}{n+4}=\frac{5}{-10}\)

\(\Rightarrow n+4=-10\Rightarrow n=-14\)

c) Để a là số nguyên thì \(\frac{5}{n+4}+1\)  có giá trị nguyên

\(\Rightarrow\frac{5}{n+4}\) có giá trị nguyên

\(\Rightarrow5⋮n+4\)

Vì \(n+4\inℤ\) nên \(n+4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{-3;-5;1;-9\right\}\)

25 tháng 6 2021

a, để a là phân số thì mẫu số phải khác 0

vây nên n+4 phải khác 0 suy ra n phải khác -4 

b, n+9/n+4=1/2 suy ra 2n+18=n+4 suy ra 2n-n=4-18 suy ra n=-14

c, a=n+9/n+4 có g trị nguyên

suy ra n+9 chia hết n+4

suy ra n+4+5 chia hết cho n+4

suy ra 5 chia hết cho n+4 hay n+4 thuộc ư(5)

suy ra n+4 thuộc (1;5;-1;-5)

suy ra n thuộc (-3;1;-5;-9)

chúc bạn hok tốt

4 tháng 7 2021

a, Để A là phân số thì n-1\(\ne\) 0  

=> n\(\ne\) 1 

b, Có : \(A=\frac{4}{n-1}\)

Để A có giá trị nguyên => n-1 \(\in\) Ư(4) = {1;2;4;-1;-2;-4}

Ta có bảng sau 

n-1124-1-2-4
n2350-1

-3

vậy để A là số nguyên thì n \(\in\) {2;3;5;0;-1;-3}

2 tháng 4 2018

\(a)\) Để A là phân số thì \(n-3\ne0\)\(\Rightarrow\)\(n\ne3\)

\(b)\) Ta có : 

\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để A có giá trị nguyên thì \(4⋮\left(n-3\right)\)\(\Rightarrow\)\(\left(n-3\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Suy ra : 

\(n-3\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(4\)\(2\)\(5\)\(1\)\(7\)\(-1\)

Vậy \(n\in\left\{-1;1;2;4;5;7\right\}\) thì A có giá trị nguyên 

Chúc bạn học tốt ~ 

2 tháng 4 2018

a/Để A là 1 phân số nen n-3 khac 0

Để n-3 khác 0 thì  n khác 3

b/A= n+1/n-3 = n-3+4/n-3 = 1+ 4/n-3

Để A  có giá trị nguyên thì n-3 thuộc U(4)={-1;-2;-4;1;2;4}

ta có bảng

n-3             1                    2                      4                       -1                         -2                         -4

n                 4                   5                       7                        2                         1                           -1

Vậy với n thuộc {4;5;7;2;1;-1}thì A nguyên