\(y=x^2\) và đường thẳng (d):\(y=\left(m+4\right)x-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

a, Hoành độ giao điểm tm pt 

\(x^2-\left(m+4\right)x+4m=0\)

\(\Delta=\left(m+4\right)^2-4.4m=m^2+8m+16-16m=\left(m-4\right)^2\)

Để pt có 2 nghiệm pb hay (P) cắt (d) tại 2 điểm pb khi m khác 4 

b, Thay m = -2 vào ta được 

\(x^2-2x-8=0\Leftrightarrow\left(x-1\right)^2-9=0\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\Leftrightarrow x=4;x=-2\)

Với x = 4 => y = 16 ; x = -2 => y = 4 

Vậy với m = -2 thì (P) cắt (d) tại A(4;16) ; B(-2;4) 

19 tháng 3 2022

cho e hỏi là a tính kiểu gì ra (x - 4) (x +2) vậy ạ 

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

28 tháng 3 2020

để (d) song song zới đường thẳng (d') 

=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)

b)phương trình hoành độ giao điểm của (d) zà (P)

\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)

ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)

để d cắt P tại hai điểm phân biệt 

=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)

lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)

để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)

từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương

5 tháng 4 2019

a, Với m = -1 thì \(\hept{\begin{cases}\left(P\right)y=-x^2\\\left(d\right)y=x-2\end{cases}}\)

Tọa độ giao điểm của (d) và (P) là nghiệm của hệ phương trình : 

\(\hept{\begin{cases}y=-x^2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}-x^2=x-2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+x-2=0\\y=x-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}\left(h\right)\hept{\begin{cases}x=-2\\y=-4\end{cases}}}\)

Vậy tọa độ giao điểm (d) và (P) với m = -1 là (1;-1) ; (-2;-4)

b, Phương trình hoành độ giao điểm của (d) và (P) là

\(mx^2=\left(m+2\right)x+m-1\)

\(\Leftrightarrow mx^2-\left(m+2\right)x-m+1=0\)

Vì m khác 0 nên pt trên là pt bậc 2

Khi đó \(\Delta=\left[-\left(m+2\right)\right]^2-4m\left(-m+1\right)\)

               \(=m^2+4m+4+4m^2-4m\)

               \(=5m^2+4>0\)

Nên pt trên luôn có 2 nghiệm p/b

hay (d) luôn cắt (P) tại 2 điểm phân biệt với m khác 0

26 tháng 4 2020

Mình nghĩ nên sửa đề y=2(m-1)x-m2+6 và parobol (P)y=x2

a) Với m=3 ta được (d): y=4x-3

Hoành độ giao điểm của đường thẳng (d) và parabol (P0 là nghiệm của phương trình \(x^2=4x-3\)

<=> x2-4x+3=0

<=> x2-3x-x+3=0

<=> x(x-3)-(x-3)=0

<=> (x-3)(x-1)=0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}}\)

Vậy giao điểm của (d) và (P) là A(1;1); B(3;9)

b) Phương trình hoành độ của (d) cắt (P) là nghiệm của phương trình x2-2(m-1)x-m2+6

<=> x2-2(m-1)x+m2-6=0 (1)

<=> (m-1)2-(m2-6)=7-2m

Đường thẳng (d) cắt (P) tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 1 nghiệm phân biệt

<=> 7-2m>0

<=> \(m< \frac{7}{2}\)(*)

Gọi x1;x2 là nghiệm của phương trình (1)

Khi đó thoe định lý Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1\cdot x_2+m^2=6\end{cases}}\)

Theo bài ra ta có: \(x_1^2+x_2^2=6\Leftrightarrow x_1+x_2^2+2x_1x_2=16\)

\(4\left(m^2-1\right)-2\left(m^2-6\right)=16\)

<=>2m2-8m=0

<=> m=0 hoặc m=4

m=0 (tmđk (*))

m=4 (ktmđk (*))

Vậy m=0 là giá trị cần tìm

22 tháng 5 2017
  1. a) Thay x=-1;y=3 vào (d) ta có: 3=(m+2)-1-m+6   <=>-m-2-m+6=3  <=>-2m=-1  <=>m=1/2.
9 tháng 6 2019

a) Phương trình hoành độ giao điểm của (d) và (P) là

           \(x^2=\left(m-1\right)x+4\Leftrightarrow x^2-\left(m-1\right)x-4=0\)

Ta có \(\Delta=\left(m-1\right)^2-4.\left(-4\right)=\left(m-1\right)^2+16\)

Vì \(\left(m-1\right)^2\ge0\forall m\Rightarrow\left(m-1\right)^2+16>0\forall m\)hay \(\Delta>0\)

Suy ra phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi giá trị của m

Do đó đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m

(hoặc lập luận cho ac=1.(-4)<0 nên có 2 nghiệm phân biệt ...)

b) Theo chứng minh ý a thì phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt , áp dụng hệ thức Vi-ét:

\(\hept{\begin{cases}x_1+x_2=m-1\\x_1x_2=-4\end{cases}}\)

Khi đó : \(y_1+y_2=y_1.y_2\Leftrightarrow x_1^2+x_2^2=x_1^2.x_2^2\)( có cái này là do parabol P y=x^2)

     \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2\right)^2\Leftrightarrow\left(m-1\right)^2-2.\left(-4\right)=\left(-4\right)^2\)

\(\Leftrightarrow\left(m-1\right)^2=8\Leftrightarrow\orbr{\begin{cases}m-1=2\sqrt{2}\\m-1=-2\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}+1\\m=1-2\sqrt{2}\end{cases}}\)

Vậy...........................

9 tháng 6 2019

a/

hoành độ giao điểm của (d) và ( p ) là nghiệm của phương trình

\(x^2-\left(m-1\right)x-4=0\)

den ta = \(\left(m-1\right)^2+16>0\forall m\)

=> phương trình luôn có 2 nghiệm phân biệt với mọi m

b/

vì \(y_1,y_2\) là tung độ giao điểm của (d ) và ( p ) 

=> \(y_1=x_1^2\)

    \(y_2=x_2^2\)

theo vi - ét có \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-4\end{cases}}\)

ta có \(y_1+y_2=y_1.y_2\)

<=> \(x_1^2+x_2^2=x_1^2x_2^2\)

<=> \(\left(x_2+x_{ }_1\right)^2-2x_1x_2-x_1^2.x_2^2=0\)

<=> \(\left(m-1\right)^2-2.\left(-4\right)-\left(-4\right)^2=0\)

<=> \(m^2-2m+1+8-16=0\)

<=> \(m^2-2m-7=0\)

<=>\(\left(m-1\right)^2-8=0\)

<=> \(\left(m-1\right)^2=8\)

<=> \(m-1=2\sqrt{2}\left(h\right)m-1=-2\sqrt{2}\)

<=> \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)

vậy \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)

CHÚC BẠN HỌC TỐT

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2