Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố)
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố)
=>p^3+2=3^3+2=29 (là số nghuyên tố)
*>p>3
vì p là số nguyên tố =>p ko chia hết cho 3 (1)
p thuộc Z =>p^2 là số chính phương (2)
từ (1),(2)=>p^2 chia 3 dư 1
=>p^2+2 chia hết cho 3 (3)
mặt khác p>3
=>p^2>9
=>p^2+2>11 (4)
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài)
nhầm đề , đây là bài đúng ! ^.^
1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố)
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố)
=>p^3+2=3^3+2=29 (là số nghuyên tố)
*>p>3
vì p là số nguyên tố =>p ko chia hết cho 3 (1)
p thuộc Z =>p^2 là số chính phương (2)
từ (1),(2)=>p^2 chia 3 dư 1
=>p^2+2 chia hết cho 3 (3)
mặt khác p>3
=>p^2>9
=>p^2+2>11 (4)
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài)
2/ Đặt Q(x)=P(x)-(x+1)
Q(1999)=P(1999)-(1999+1)=2000-2000=0
Q(2000)=P(2000)-(2000+1)=2001-2001=0
=>x-1999,x-2000 là các nghiệm của Q(x)
Đặt Q(x)=(x-1999)(x-2000).g(x)
Do P(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1
=>Q(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1
=>g(x)có dạng ax+b (a thuộc Z,a khác 0,-1)
=>Q(x) =(x-1999)(x-2000).( ax+b)
=>P(x)=(x-1999)(x-2000).( ax+b)+( x+1)
P(2001)=(2001-1999)(2001-2000)
(a.2001+b)+(2001+1)
=2(2001a+b)+2002
=4002a+2b+2002
P(1998)= (1998-1999)(1998-2000)(a.1998+b)
+(1998+1)
=2(a.1998+b)+1999
=3996a+2b+1999
=>P(2001)- P(1998)= 4002a+2b+2002-3996a-2b-1999
=6a+3
=3(a+2)
Do a thuộc Z,a khác -1
=>a+2 thuộc Z,a+2 khác 1
=>3(a+2) chia hết cho 3 , 3(a+2) khác 3
=>3(a+2) là hợp số
=> P(2001) - P(1998) là hợp số
Mình cũng ghặp câu này nhưng k pt trả lời Đang ôn thi học kỳ đây
Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số.
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố.
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số.
Vậy p = 3.
+) Với p=2 thì p= 2+2=4 LÀ HỢP SỐ
p=2+4=6 LÀ HỢP SỐ
vậy p=2 loại
+) Với p=3 thì p= 3+2 = 5 là số nguyên tố
3+4=7 là số nguyên tố
Vậy p=3 nhận
+) Với p<3 thì p=3k+1 hoặc 3k+2
TH1: p=3k+1 thì p=3k+ 1+ 2=3k+3 chia hết cho 3 và <3 nên p+2 là hợp số
vậy p=3k+ 1 loại
TH2: p=3k+ 2 thì p=3k+2+2=3k+ 4 chia hết cho 2 và <3 nên p+ 2 là hợp số
vậy p=3k+ 2 loại
vậy p = 3 thì p+2 và p+4 là các số nguyên tố
Bài 1:
Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 16.m, b = 16.n vào a+b = 128, ta có:
\(16.m+16.n=128\)
\(\Rightarrow16.\left(m+n\right)=128\)
\(\Rightarrow m+n=128\div16\)
\(\Rightarrow m+n=8\)
Vì m và n nguyên tố cùng nhau
\(\Rightarrow\) Ta có bảng giá trị:
m | 1 | 8 | 3 | 5 |
n | 8 | 1 | 5 | 3 |
a | 16 | 128 | 48 | 80 |
b | 128 | 16 | 80 | 48 |
Vậy các cặp (a,b) cần tìm là:
(16; 128); (128; 16); (48; 80); (80; 48).
Bài 2:
Gọi d là ƯCLN (2n+1, 2n+3), d \(\in\) N*
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+3 và 2n+1 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)
\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.