Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3 nên p có dạnh :3k+1;3k+2
+)Nếu p=3k+2=>4p+1=4(3k+2)+1=4.3k+8+1=4.3k+9 =3.(4k+3) chia hết cho 3
=>4p+1 là hợp số (trái với giả thiết,loại)
Vậy p=3k+1 =>2p+1=2(3k+1)+1=2.3k+2+1=2.3k+3=3.(2k+1) chia hết cho 3
=>2p+1 là hợp số (đpcm)
Lần này l-i-k-e cho mình tử tế nha
p là SNT, p>3 nên p có dạng 3k+1 hoạc 3k+2.
p = 3k+1 thì 2p+1= 2.(3k+1)+1= 6k+2+1=6k+3=3(2k+1) chia hết cho 3 là hợp số trái với đề bài.
\(\Rightarrow\) p=3k+2
\(\Rightarrow\)4p+1= 4(3k+2)+1= 12k+8+1=12k+9=3(4k+3) chia hết cho 3 là hợp số.
vậy...
Xét 3 số tự nhiên tiếp : \(4p\) , \(4p+1\) , \(4p+2\) . Trong ba số này ắt hẳn ta sẽ tìm được duy nhất một số chia hết cho 3 (1)
Ta xét :
+ Vì p là số nguyên tố ( p > 5 ) nên p không chia hết cho 3 . Do vậy 4p không chia hết cho 3 (2)
+ Vì 2p+1 là số nguyên tố và p > 5 nên \(2p+1>3\) . Suy ra \(2p+1\) không chia hết cho 3 . Mà \(4p+2=2\left(2p+1\right)\) => \(4p+2\) không chia hết cho 3 (3)
Từ (1) , (2) , (3) ta suy ra được \(4p+1\) chia hết cho 3 . Mà p > 5 =>\(4p+1>3\) không thể là số nguyên tố , hay nói cách khác \(4p+1\) là hợp số.
Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3
TH1 : p chia cho 3 dư 1
=> p = 3k + 1 ( k thuộc N*)
=> 2p + 1 = 6k + 3 chia hết cho 3
=> 2p + 1 không phải số nguyên tố
=> loại
TH2 : p chia 3 dư 2
=> p = 3k + 2 (k thuộc N*)
=> 4p + 1 = 12k + 9 chia hết cho 3
=> 4p + 1 là hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2
+ Nếu p=3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+ Vậy p có dạng 3k+2
Khi đó chia hết cho 3
Vậy 4p+1 là hợp số
tick nha