Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
là hợp số bạn nha
ví dụ 1:P=5
ta có 5.5+1=26
26 là hợp số
ví dụ 2:P=7
7.5+1=36
36 là hợp số
là hợp số
ví dụ1: P=5
ta có 5.5+1=26
26 là hợp số
ví dụ 2:P=7
ta có 7.5+1=36
p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
Chúc bn hok tốt
+ Do p nguyên tố > 3 => p chia 3 dư 1 hoặc 2
Nếu p chia 3 dư 2 thì p = 3k + 2 (k thuộc N*) => 10p + 1 = 10.(3k + 2) + 1 = 30k + 20 + 1 = 30k + 21 chia hết cho 3, là hợp số, loại
=> p = 3k + 1
=> 5p + 1 = 5.(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6 chia hết cho 3 (1)
+ Do p nguyên tố > 3 => p lẻ => 5p lẻ => 5p + 1 chẵn => 5p + 1 chia hết cho 2 (2)
Từ (1) và (2); do (3;2)=1 => 5p + 1 chia hết cho 6 (đpcm)
Bài này là chứng minh chứ ko fai tìm nha bn
Vì p là số nguyên tố lớn hơn 3 nên p sẽ có một trong các dạng : \(3k+1;3k+2\) \(\left(k\in N\right)\)
Nếu \(p=3k+1\)thì khi đó \(17p+1=17.\left(3k+1\right)+1=51k+17+1=51k+18=3.\left(17k+6\right)⋮3\)
Suy ra \(17p+1⋮3\)hay \(17p+1\)là hợp số
Nếu \(p=3k+2\)thì khi đó
\(10p+1=10.\left(3k+2\right)+1=30k+20+1=30k+21=3.\left(10k+7\right)⋮3\)
Suy ra \(10p+1⋮3\)hay \(10p+1\)là hợp số ( loại vì theo đề bài \(10p+1\)là số nguyên tố )
Vậy \(17p+1\)là hợp số
vì p là số nguyên tố lớn hơn 3 => khi chia p cho 3 ta có 2 dạng: p=3k+1 hoặc p=3k+2. ( k \(\in\)N* )
- nếu p=3k+2. => 10p+1 = 30k+20+1=30k+21 chia hết cho 3 và lớn hơn 3.
=> 10p+1 là hợp số (trái với đề, loại)
vậy p=3k+1.
=> 5p+1=15k+5+1=15k+6 chia hết cho 3 và lớn hơn 3
=> 5p+1 là hợp số.
vậy 5p+1 là hợp số (đpcm)
bạn k mình nha!