\(\sqrt{a+1}+\sqrt{b+1}\\\)với a,b là các số không âm và \(a^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

Đề thi học kỳ 1 trường Ams

**Min

Từ \(a^2+b^2+c^2=1\Rightarrow a^2\le1;b^2\le1;c^2\le1\)

\(\Rightarrow a\le1;b\le1;c\le1\Rightarrow a^2\le a;b^2\le b;c^2\le c\)

Khi đó:

\(\sqrt{a+b^2}\ge\sqrt{a^2+b^2};\sqrt{b+c^2}\ge\sqrt{b^2+c^2};\sqrt{c+a^2}\ge\sqrt{c^2+a^2}\)

\(\Rightarrow P\ge\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

\(\Rightarrow P\ge\sqrt{1-c^2}+\sqrt{1-a^2}+\sqrt{1-b^2}\)

Ta có:

\(\sqrt{1-c^2}\ge1-c^2\Leftrightarrow1-c^2\ge1-2c^2+c^4\Leftrightarrow c^2\left(1-c^2\right)\ge0\left(true!!!\right)\)

Tương tự cộng lại:

\(P\ge3-\left(a^2+b^2+c^2\right)=2\)

dấu "=" xảy ra tại \(a=b=0;c=1\) and hoán vị.

**Max

Có BĐT phụ sau:\(\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\left(ezprove\right)\)

Áp dụng:

\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)

\(\le\sqrt{3\left(a+b+c+a^2+b^2+c^2\right)}\)

\(=\sqrt{3\left(a+b+c\right)+3}\)

\(\le\sqrt{3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+3\right)}=\sqrt{3\cdot\sqrt{3}+3}\)

Dấu "=" xảy ra tại \(a=b=c=\pm\frac{1}{\sqrt{3}}\)

1 tháng 5 2018

bn sử dụng bất đẳng thức cô si đi

1 tháng 5 2018

Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v

25 tháng 6 2017

Theo BĐT C-S: 

\(S^2=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)^2\)

\(\le\left(1+1+1+1\right)\left(a+b+c+d\right)\)

\(=4\cdot\left(a+b+c+d\right)=4\left(a+b+c+d=1\right)\)

\(\Rightarrow S^2\le4\Rightarrow S\le2\)

Đẳng thức xảy ra khi a=b=c=d=1/4

26 tháng 6 2017

giá trị nhỏ nhất nữa bạn

23 tháng 6 2021

\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

áp dụng bunhia - cốpxki

\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=6\left(a+b+c\right)\)

\(=6.2021=12126< =>P=\sqrt{12126}\)

vậy MAX P=\(\sqrt{12126}\)

24 tháng 6 2021

\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

\(\Rightarrow P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

Áp dụng BĐT Bunyakovsky ta có:

\(P^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=6\left(a+b+c\right)=6\cdot2021\)

\(\Rightarrow P\le\sqrt{6\cdot2021}=\sqrt{12126}\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{2021}{3}\)

Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\frac{2021}{3}\)

27 tháng 5 2021

Lượn lờ trên Hỏi Bài mà khó thế má

27 tháng 5 2021

sai đề mng ạ :> lỗi của mình a^3 +b^3 +11 ạ trên tử ấy